Skip to main content

Advertisement

Log in

Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background and methods

Natural killer (NK) cells can react with tumor cells through the balance of inhibitory and stimulatory signals between NK cell surface receptors and their ligands, such as MHC class I chain-related A (MICA), MHC class I chain-related B (MICB), and several UL16-binding proteins (ULBPs). In the present study, we evaluated the relationship between NKG2D ligand expression and matrix metalloproteinase (MMP) activity in in vitro culture systems of a panel of gastric cancer cell lines (n = 10) and clinical samples (n = 102).

Results

First, the surface expression of NK group 2 member D (NKG2D) ligands (MICA, MICB, ULBP-2, and ULBP-3) on tumor cells was markedly downregulated on in vitro culture, in parallel to the upregulation of MMPs analyzed by gelatin zymography and gene expression microarray, whereas the transcript levels of NKG2D ligands remained unchanged on in vitro culture. Second, MMP-specific inhibitors could restore the downregulated expression of NKG2D ligands and functionally improve susceptibilities to NK cells in vitro. Third, the production of soluble NKG2D ligands was increased on in vitro culture and was inhibited by MMP-specific inhibitors. Finally, there was a significant inverse correlation between MMP-9 expression and NKG2D ligand expression as analyzed by immunohistochemistry in clinical tumor samples.

Conclusion

The present study is a comprehensive study demonstrating that upregulation of MMP activity can induce a downregulation of expression of NKG2D ligands in gastric cancer cells, leading to lower-level susceptibility to NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moretta L, Locatelli F, Pende D, et al. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117:764–71.

    Article  CAS  PubMed  Google Scholar 

  3. Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12:239–52.

    Article  CAS  PubMed  Google Scholar 

  4. Bae DS, Hwang YK, Lee JK. Importance of NKG2D-NKG2D ligands interaction for cytolytic activity of natural killer cell. Cell Immunol. 2012;276:122–7.

    Article  CAS  PubMed  Google Scholar 

  5. Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene. 2008;27:5944–58.

    Article  CAS  PubMed  Google Scholar 

  6. El-Gazzar A, Groh V, Spies T. Immunobiology and conflicting roles of the human NKG2D lymphocyte receptor and its ligands in cancer. J Immunol. 2013;191:1509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clayton A, Mitchell JP, Court J, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180:7249–58.

    Article  CAS  PubMed  Google Scholar 

  8. Mimura K, Kamiya T, Shiraishi K, et al. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer. Int J Cancer. 2014;135:1390–8.

    Article  CAS  PubMed  Google Scholar 

  9. McGilvray RW, Eagle RA, Watson NF, et al. NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res. 2009;15:6993–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgado S, Sanchez-Correa B, Casado JG, et al. NK cell recognition and killing of melanoma cells is controlled by multiple activating receptor–ligand interactions. J Innate Immun. 2011;3:365–73.

    Article  CAS  PubMed  Google Scholar 

  11. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13:534–40.

    Article  CAS  PubMed  Google Scholar 

  12. Edsparr K, Basse PH, Goldfarb RH, et al. Matrix metalloproteinases in cytotoxic lymphocytes impact on tumour infiltration and immunomodulation. Cancer Microenviron. 2011;4:351–60.

    Article  CAS  PubMed  Google Scholar 

  13. Eiro N, Fernandez-Garcia B, Gonzalez LO, et al. Cytokines related to MMP-11 expression by inflammatory cells and breast cancer metastasis. Oncoimmunology. 2013;2:e24010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leifler KS, Svensson S, Abrahamsson A, et al. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol. 2013;190:4420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun D, Wang X, Zhang H, et al. MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int. 2011;35:569–74.

    Article  CAS  PubMed  Google Scholar 

  16. Liu G, Atteridge CL, Wang X, et al. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of a disintegrin and metalloproteinases. J Immunol. 2010;184:3346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mimura K, Shiraishi K, Mueller A, et al. The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer. J Immunol. 2013;191:6261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siren V, Salmenpera P, Kankuri E, et al. Cell–cell contact activation of fibroblasts increases the expression of matrix metalloproteinases. Ann Med. 2006;38:212–20.

    Article  CAS  PubMed  Google Scholar 

  19. Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev. 2010;235:267–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chitadze G, Bhat J, Lettau M, et al. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78:120–9.

    Article  CAS  PubMed  Google Scholar 

  21. Huergo-Zapico L, Acebes-Huerta A, López-Soto A, et al. Molecular bases for the regulation of NKG2D ligands in cancer. Front Immunol. 2014;5:106.

    Article  PubMed  PubMed Central  Google Scholar 

  22. López-Soto A, Huergo-Zapico L, Acebes-Huerta A, et al. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136:1741–50.

    Article  PubMed  Google Scholar 

  23. Cerboni C, Zingoni A, Cippitelli M, et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood. 2007;110:606–15.

    Article  CAS  PubMed  Google Scholar 

  24. Tsukerman P, Stern-Ginossar N, Gur C, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res. 2012;72:5463–72.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen H, Hagemann-Jensen M, Lauridsen F, et al. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment. Mol Immunol. 2013;53:255–64.

    Article  CAS  PubMed  Google Scholar 

  26. Okita R, Mougiakakos D, Ando T, et al. HER2/HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule A and B expression in human breast cancer cell lines. J Immunol. 2012;188:2136–45.

    Article  CAS  PubMed  Google Scholar 

  27. Chitadze G, Lettau M, Bhat J, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133:1557–66.

    Article  CAS  PubMed  Google Scholar 

  28. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008;68:6368–76.

    Article  CAS  PubMed  Google Scholar 

  29. Kohga K, Takehara T, Tatsumi T, et al. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res. 2009;69:8050–7.

    Article  CAS  PubMed  Google Scholar 

  30. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A. 1999;96:6879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cerboni C, Fionda C, Soriani A, et al. The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front Immunol. 2014;4:508.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eagle RA, Jafferji I, Barrow AD. Beyond stressed self: evidence for NKG2D ligand expression on healthy cells. Curr Immunol Rev. 2009;5:22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujita H, Hatanaka Y, Sutoh Y, et al. Immunohistochemical validation and expression profiling of NKG2D Ligands in a wide spectrum of human epithelial neoplasms. J Histochem Cytochem. 2015;63:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guerra N, Tan YX, Joncker NT, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 2008;28:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. López-Soto A, Zapico LH, Acebes-Huerta A, et al. Regulation of NKG2D signaling during the epithelial-to-mesenchymal transition. Oncoimmunology. 2013;2:e25820.

    Article  PubMed  PubMed Central  Google Scholar 

  36. López-Soto A, Huergo-Zapico L, Galvan JA, et al. Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol. 2013;190:4408–19.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Clinician Scientist Award and Clinician Scientist Individual Research Grant from the National Medical Research Council of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraishi, K., Mimura, K., Kua, LF. et al. Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility. J Gastroenterol 51, 1101–1111 (2016). https://doi.org/10.1007/s00535-016-1197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1197-x

Keywords

Navigation