Journal of Gastroenterology

, Volume 51, Issue 3, pp 214–221 | Cite as

A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma

  • Eyal Barlev
  • Udi Zelig
  • Omri Bar
  • Cheli Segev
  • Shaul Mordechai
  • Joseph Kapelushnik
  • Ilana Nathan
  • Felix Flomen
  • Hanoch Kashtan
  • Ram Dickman
  • Osnat Madhala-Givon
  • Nir Wasserberg
Original Article—Alimentary Tract

Abstract

Background

Early detection of colorectal cancer (CRC) can reduce mortality and morbidity. Current screening methods include colonoscopy and stool tests, but a simple low-cost blood test would increase compliance. This preliminary study assessed the utility of analyzing the entire bio-molecular profile of peripheral blood mononuclear cells (PBMCs) and plasma using Fourier transform infrared (FTIR) spectroscopy for early detection of CRC.

Methods

Blood samples were prospectively collected from 62 candidates for CRC screening/diagnostic colonoscopy or surgery for colonic neoplasia. PBMCs and plasma were separated by Ficoll gradient, dried on zinc selenide slides, and placed under a FTIR microscope. FTIR spectra were analyzed for biomarkers and classified by principal component and discriminant analyses. Findings were compared among diagnostic groups.

Results

Significant changes in multiple bands that can serve as CRC biomarkers were observed in PBMCs (p = ~0.01) and plasma (p = ~0.0001) spectra. There were minor but statistically significant differences in both blood components between healthy individuals and patients with benign polyps. Following multivariate analysis, the healthy individuals could be well distinguished from patients with CRC, and the patients with benign polyps were mostly distributed as a distinct subgroup within the overlap region. Leave-one-out cross-validation for evaluating method performance yielded an area under the receiver operating characteristics curve of 0.77, with sensitivity 81.5 % and specificity 71.4 %.

Conclusions

Joint analysis of the biochemical profile of two blood components rather than a single biomarker is a promising strategy for early detection of CRC. Additional studies are required to validate our preliminary clinical results.

Keywords

Colorectal cancer Infrared spectroscopy Peripheral blood mononuclear cells Plasma Cancer detection 

Abbreviations

AUC

Area under the curve

CA

Cancer antigen

CEA

Carcinoembryonic antigen

CRC

Colorectal cancer

FLDA

Fisher linear discriminant analysis

FTIR

Fourier transform infrared

PBMCs

Peripheral blood mononuclear cells

PCA

Principal component analysis

QDA

Quadratic discriminant analysis

ROC

Receiver operating characteristics

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Shapiro JA, Klabunde CN, Thompson TD, et al. Patterns of colorectal cancer test use, including CT colonography, in the 2010 National Health Interview Survey. Cancer Epidemiol Biomark Prev. 2012;21(6):895–904.CrossRefGoogle Scholar
  3. 3.
    Parra-Blanco A, Gimeno-García AZ, Quintero E, et al. Diagnostic accuracy of immunochemical versus guaiac faecal occult blood tests for colorectal cancer screening. J Gastroenterol. 2010;45(7):703–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Sturgeon CM, Duffy MJ, Stenman U-H, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–79.CrossRefPubMedGoogle Scholar
  5. 5.
    Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63(2):317–25.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Nichita C, Ciarloni L, Monnier-Benoit S, et al. A novel gene expression signature in peripheral blood mononuclear cells for early detection of colorectal cancer. Aliment Pharmacol Ther. 2014;39(5):507–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Mantsch HH, Chapman D. Infrared spectroscopy of biomolecules. New York: Wiley; 1996.Google Scholar
  8. 8.
    Argov S, Sahu RK, Bernshtain E, et al. Inflamatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Biopolymers. 2004;75(5):384–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Sahu R, Mordechai S. Fourier transform infrared spectroscopy in cancer detection. Future oncol. 2005;1(5):635–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer immunol immunother CII. 2011;60(7):909–18.CrossRefPubMedGoogle Scholar
  11. 11.
    Handy B. The clinical utility of tumor markers. Lab Med. 2009;40(2):99–103.CrossRefGoogle Scholar
  12. 12.
    Ostrovsky E, Zelig U, Gusakova I, et al. Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood. IEEE trans bio-med eng. 2013;60(2):343–53.CrossRefGoogle Scholar
  13. 13.
    Zelig U, Mordechai S, Shubinsky G, et al. Pre-screening and follow-up of childhood acute leukemia using biochemical infrared analysis of peripheral blood mononuclear cells. Biochim Biophys Acta. 2011;1810(9):827–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Bird B, Miljkovic M, Romeo MJ, et al. Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology. BMC clinical pathology. 2008;8(1):8.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Toyran N, Lasch P, Naumann D, et al. Early alterations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochem J. 2006;397(3):427–36.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2012.Google Scholar
  17. 17.
    Toll A, Fabius D, Hyslop T, et al. Prognostic significance of high-grade dysplasia in colorectal adenomas. Colorectal Dis. 2011;13(4):370–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.CrossRefGoogle Scholar
  19. 19.
    Movasaghi Z, Rehman S, Rehman IU. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43:134–79.CrossRefGoogle Scholar
  20. 20.
    Liu KZ, Xu M, Scott DA. Biomolecular characterisation of leucocytes by infrared spectroscopy. Br J Haematol. 2007;136(5):713–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Gounaris E, Blatner NR, Dennis K, et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 2009;69(13):5490–7.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Tokuno K, Hazama S, Yoshino S, et al. Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res. 2009;29(5):1527–32.PubMedGoogle Scholar
  25. 25.
    Sasada T, Kimura M, Yoshida Y, et al. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies. Cancer. 2003;98(5):1089–99.CrossRefPubMedGoogle Scholar
  26. 26.
    Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–66.CrossRefPubMedGoogle Scholar
  28. 28.
    Hands JR, Dorling KM, Abel P, et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics. 2014;7(3–4):189–99.CrossRefPubMedGoogle Scholar
  29. 29.
    Gajjar K, Trevisan J, Owens G, et al. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst. 2013;138(14):3917–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Ollesch J, Heinze M, Heise HM, et al. It’s in your blood: spectral biomarker candidates for urinary bladder cancer from automated FTIR spectroscopy. J Biophotonics. 2014;7(3–4):210–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Mead R, Duku M, Bhandari P, Cree IA. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br J Cancer. 2011;105(2):239–45.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Wild N, Andres H, Rollinger W, et al. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res. 2010;16(24):6111–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Seo JY, Chun J, Lee C, Hong KS, Im JP, Kim SG, Jung HC, Kim JS. Novel risk stratification for recurrence after endoscopic resection of advanced colorectal adenoma. Gastrointest Endosc. 2015;81(3):655–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Engwegen JY, Depla AC, Smits ME, et al. Detection of colorectal cancer by serum and tissue protein profiling: a prospective study in a population at risk. Biomarker Insights. 2008;3:375.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Yesil A, Babacan Abanonu G, Colak Y, et al. Prognostic significance of DR-70 levels in dysplastic colorectal polyps. Gastroenterol Res Pract. 2013;2013:1–7. Art. ID 275392. doi:10.1155/2013/275392.CrossRefGoogle Scholar
  36. 36.
    Vatandoost N, Ghanbari J, Mojaver M, et al. Early detection of colorectal cancer: from conventional methods to novel biomarkers. J Cancer Res Clin Oncol. 2015. doi:10.1007/s00432-015-1928-z.PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Eyal Barlev
    • 1
    • 2
  • Udi Zelig
    • 3
  • Omri Bar
    • 3
  • Cheli Segev
    • 3
  • Shaul Mordechai
    • 4
  • Joseph Kapelushnik
    • 5
    • 6
  • Ilana Nathan
    • 7
    • 8
  • Felix Flomen
    • 3
  • Hanoch Kashtan
    • 9
  • Ram Dickman
    • 2
    • 10
  • Osnat Madhala-Givon
    • 1
    • 2
  • Nir Wasserberg
    • 1
    • 2
  1. 1.Department of Surgery BRabin Medical CenterPetach TikvaIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Todos Medical LtdRehovotIsrael
  4. 4.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael
  5. 5.Pediatric Hemato-Oncology UnitSoroka University Medical CenterBeer-ShevaIsrael
  6. 6.Faculty of MedicineBen-Gurion University of the NegevBeer-ShevaIsrael
  7. 7.Department of Clinical BiochemistryBen-Gurion University of the NegevBeer-ShevaIsrael
  8. 8.Institute of HematologySoroka University Medical CenterBeer-ShevaIsrael
  9. 9.Division of General SurgeryRabin Medical CenterPetach TikvaIsrael
  10. 10.Department of GastroenterologyRabin Medical CenterPetach TikvaIsrael

Personalised recommendations