Skip to main content

Advertisement

Log in

miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Chronic hepatitis B virus (HBV) infection, which can lead to hepatic disease, has become a critical national healthcare problem, and many people die each year as a result of HBV infection and its complications. Although microRNA-33a (miR-33a) is a novel modulator of lipid and cholesterol metabolism, the role of miR-33a in the hepatic fibrogenesis is still unknown. Here, we aimed to explore the roles and mechanisms of miR-33a in liver fibrosis.

Methods

miR-33a expression in whole liver and serum samples was measured from chronic hepatitis B (CHB) patients by quantitative real-time PCR (qRT-PCR). In addition, different murine hepatic fibrosis models were produced to consolidate the results in human tissue. Human and murine primary liver fibrosis-associated cells were isolated and treated with transforming growth factor-β1 (TGF-β1).

Results

miR-33a expression levels in liver tissue significantly increased with a fibrosis progression manner in the human liver. Furthermore, serum miR-33a levels associated positively with progressing process of hepatic fibrosis. miR-33a was in particular increased in hepatic stellate cells (HSC) than other liver fibrosis-associated cells. Stimulation of HSCs with TGF-β1 leads to a critical increase of miR-33a. Increasing miR-33a levels increased (whereas inhibiting miR-33a weakened) the activation role of TGF-β1 in LX-2 cells, which might be a potential mechanism through moderating Smad7 expression.

Conclusions

miR-33a may be a novel marker for HSC activation and hepatic fibrosis progress, suggesting a new therapeutic target in liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guha IN, Myers RP, Patel K, et al. Biomarkers of liver fibrosis: what lies beneath the receiver operating characteristic curve? Hepatology. 2011;54(4):1454–62.

    Article  CAS  PubMed  Google Scholar 

  2. Fallowfield JA. Therapeutic targets in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G709–15.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 2010;7(8):425–36.

    Article  PubMed  Google Scholar 

  4. Zhang L, Wang G, Hou W, et al. Contemporary clinical research of traditional Chinese medicines for chronic hepatitis B in China: an analytical review. Hepatology. 2010;51(2):690–8.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ji F, Yang B, Peng X, et al. Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat. 2011;18(7):e242–51.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou YH, Wu C, Zhuang H. Vaccination against hepatitis B: the Chinese experience. Chin Med J (Engl). 2009;122(1):98–102.

    Google Scholar 

  7. Iizuka M, Ogawa T, Enomoto M, et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair. 2012;5(1):12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shukla GC, Singh J, Barik S. MicroRNAs: processing maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011;3(3):83–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Auyeung VC, Ulitsky I, McGeary SE, et al. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell. 2013;152(4):844–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  12. De Santa F, Iosue I, Del Rio A, et al. microRNA biogenesis pathway as a therapeutic target for human disease and cancer. Curr Pharm Des. 2013;19(4):745–64.

    Article  PubMed  Google Scholar 

  13. Bavan L, Midwood K, Nanchahal J. MicroRNA epigenetics: a new avenue for wound healing research. BioDrugs. 2011;25(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao L, Chen X, Cao Y. New role of microRNA: carcinogenesis and clinical application in cancer. Acta Biochim Biophys Sin (Shanghai). 2011;43(11):831–9.

    Article  CAS  Google Scholar 

  15. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33(6):1126–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Stather PW, Sylvius N, Wild JB, et al. Differential MicroRNA expression profiles in peripheral arterial disease Circ Cardiovasc Genet 2013.

  17. Ciccacci C, Di Fusco D, Cacciotti L, et al. MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol. 2013;50(6):867–72.

    Article  CAS  PubMed  Google Scholar 

  18. Goedeke L, Vales-Lara FM, Fenstermaker M, et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol. 2013;33(11):2339–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA. 2011;108(22):9232–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kuo PL, Liao SH, Hung JY, et al. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta. 2013;1830(6):3756–66.

    Article  CAS  PubMed  Google Scholar 

  23. Cirera-Salinas D, Pauta M, Allen RM, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11(5):922–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal. 2014;26(1):141–8.

    Article  PubMed  Google Scholar 

  25. Li J, Liu J, Huang B, et al. Hepatitis B virus infection status is an independent risk factor for multiple myeloma patients after autologous hematopoietic stem cell transplantation. Tumour Biol. 2013;34(3):1723–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lafyatis R. Targeting fibrosis in systemic sclerosis. Endocr Metab Immune Disord Drug Targets. 2006;6(4):395–400.

    Article  CAS  PubMed  Google Scholar 

  27. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 2001;34(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  28. Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61(11):1600–9.

    Article  CAS  PubMed  Google Scholar 

  29. Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  30. Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol Med. 2005;117:99–113.

    CAS  PubMed  Google Scholar 

  31. Ramm GA. Isolation and culture of rat hepatic stellate cells. J Gastroenterol Hepatol. 1998;13(8):846–51.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura A, Ueno T, Yagi Y, et al. Human primary cultured hepatic stellate cells can be cryopreserved. Med Mol Morphol. 2010;43(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  33. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  34. Lecluyse EL, Alexandre E. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol Biol. 2010;640:57–82.

    Article  CAS  PubMed  Google Scholar 

  35. Rayner KJ, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696–9.

    Article  CAS  PubMed  Google Scholar 

  38. Desmet VJ, Gerber M, Hoofnagle JH. et al. Classification of chronic hepatitis: diagnosis, grading and staging Hepatology. 1994;19(6):1513–20.

    CAS  Google Scholar 

  39. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006;10(1):76–99.

    Article  CAS  PubMed  Google Scholar 

  40. Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(9):542–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2010;53(1):209–18.

    Article  PubMed  Google Scholar 

  42. He Y, Huang C, Zhang SP, et al. The potential of microRNAs in liver fibrosis. Cell Signal. 2012;24(12):2268–72.

    Article  CAS  PubMed  Google Scholar 

  43. Roderburg C, Luedde M, Vargas Cardenas D, et al. miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J Hepatol. 2012;58(4):736–42.

    Article  PubMed  Google Scholar 

  44. Vergniol J, Foucher J, Terrebonne E, et al. Noninvasive tests for fibrosis and liver stiffness predict 5-year outcomes of patients with chronic hepatitis C. Gastroenterology. 2011;140(7):1970–9 1979 e1971–1973.

    Article  PubMed  Google Scholar 

  45. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  46. Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA. 2009;106(11):4402–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Trebicka J, Anadol E, Elfimova N, et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis. J Hepatol. 2012;58(2):234–9.

    Article  PubMed  Google Scholar 

  48. Tomimaru Y, Eguchi H, Nagano H, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2011;56(1):167–75.

    Article  PubMed  Google Scholar 

  49. Xu J, Wu C, Che X, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  50. He Y, Huang C, Sun X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal. 2012;24(10):1923–30.

    Article  CAS  PubMed  Google Scholar 

  51. Friedman SL. Liver fibrosis: from mechanisms to treatment. Gastroenterol Clin Biol. 2007;31(10):812–4.

    Article  PubMed  Google Scholar 

  52. Simic P, Vukicevic S. Bone morphogenetic proteins: from developmental signals to tissue regeneration. Conference on bone morphogenetic proteins. EMBO Rep. 2007;8(4):327–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41(4):263–72.

    Article  CAS  Google Scholar 

  54. Monteleone G, Pallone F, MacDonald TT. Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol. 2004;25(10):513–7.

    Article  CAS  PubMed  Google Scholar 

  55. Briones-Orta MA, Tecalco-Cruz AC, Sosa-Garrocho M, et al. Inhibitory Smad7: emerging roles in health and disease. Curr Mol Pharmacol. 2011;4(2):141–53.

    Article  CAS  PubMed  Google Scholar 

  56. Hamzavi J, Ehnert S, Godoy P, et al. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med. 2008;12(5B):2130–44.

    Article  CAS  PubMed  Google Scholar 

  57. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125(1):178–91.

    Article  CAS  PubMed  Google Scholar 

  58. Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology. 2008;135(2):642–59.

    Article  CAS  PubMed  Google Scholar 

  59. Wang B, Li W, Chen Y, et al. Coexpression of Smad7 and UPA attenuates carbon tetrachloride-induced rat liver fibrosis. Med Sci Monit. 2012;18(10):BR394–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Marquez RT, Bandyopadhyay S, Wendlandt EB, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest. 2010;90(12):1727–36.

    Article  CAS  PubMed  Google Scholar 

  61. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  62. Lodish HF, Zhou B, Liu G, et al. Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008;8(2):120–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CF., Sun, CC., Zhao, F. et al. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J Gastroenterol 50, 480–490 (2015). https://doi.org/10.1007/s00535-014-0986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-0986-3

Keywords

Navigation