Skip to main content

Advertisement

Log in

Diagnostic accuracy for macroscopic classification of nodular hepatocellular carcinoma: comparison of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and angiography-assisted computed tomography

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The macroscopic type of hepatocellular carcinoma (HCC) is a predictor of prognosis. We clarified the diagnostic value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)–enhanced magnetic resonance imaging (MRI) in the macroscopic classification of nodular hepatocellular carcinoma (HCC) as compared to angiography-assisted computed tomography (CT).

Methods

A total of 71 surgically resected nodular HCCs with a maximum diameter of ≤5 cm were investigated. HCCs were evaluated preoperatively using Gd-EOB-DTPA–enhanced MRI and angiography-assisted CT. HCCs were pathologically classified as simple nodular (SN), SN with extranodular growth (SN-EG), or confluent multinodular (CMN). SN-EG and CMN were grouped as non-SN. Five readers independently reviewed the images using a five-point scale. We examined the accuracy of both imaging modalities in differentiating between SN and non-SN HCC.

Results

Overall, the area under the receiver operating characteristic curve (A z ) for the diagnosis of non-SN did not differ between Gd-EOB-DTPA–enhanced MRI and angiography-assisted CT [0.879 (95 % confidence interval (CI), 0.779–0.937) and 0.845 (95 % CI, 0.723–0.919), respectively]. For HCCs >2 cm, the A z for Gd-EOB-DTPA–enhanced MRI was greater than 0.9. The sensitivity, specificity, and accuracy of Gd-EOB-DTPA–enhanced MRI for identifying non-SN were equal to or higher than values with angiography-assisted CT in all three categories (all tumors, ≤2 cm, and >2 cm), but the differences were not statistically significant.

Conclusions

Using Gd-EOB-DTPA–enhanced MRI to assess the macroscopic findings in nodular HCC was equal or superior to using angiography-assisted CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

CT:

Computed tomography

CTAP:

CT during arterial portography

CTHA:

CT during hepatic arteriography

Gd-EOB-DTPA:

Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid

MRI:

Magnetic resonance imaging

SN:

Simple nodular

SN-EG:

Simple nodular with extranodular growth

CMN:

Confluent multinodular

ROC:

Receiver operating characteristic

PPV:

Positive predictive value

NPV:

Negative predictive value

References

  1. El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatol Res. 2007;37(Suppl 2):88–94.

    Article  Google Scholar 

  2. Shimada M, Rikimaru T, Hamatsu T, et al. The role of macroscopic classification in nodular-type hepatocellular carcinoma. Am J Surg. 2001;182:177–82.

    Article  CAS  PubMed  Google Scholar 

  3. Hui AM, Takayama T, Sano K, et al. Predictive value of gross classification of hepatocellular carcinoma on recurrence and survival after hepatectomy. J Hepatol. 2000;33:975–9.

    Article  CAS  PubMed  Google Scholar 

  4. Inayoshi J, Ichida T, Sugitani S, et al. Gross appearance of hepatocellular carcinoma reflects E-cadherin expression and risk of early recurrence after surgical treatment. J Gastroenterol Hepatol. 2003;18:673–7.

    Article  PubMed  Google Scholar 

  5. Kondo K, Chijiiwa K, Makino I, et al. Risk factors for early death after liver resection in patients with solitary hepatocellular carcinoma. J Hepatobiliary Pancreat Surg. 2005;12:399–404.

    Article  PubMed  Google Scholar 

  6. Matsui O, Kadoya M, Kameyama T, et al. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991;178:493–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi M, Matsui O, Ueda K, et al. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology. 2002;225:143–9.

    Article  PubMed  Google Scholar 

  8. Matsui O, Takashima T, Kadoya M, et al. Dynamic computed tomography during arterial portography: the most sensitive examination for small hepatocellular carcinomas. J Comput Assist Tomogr. 1985;9:19–24.

    Article  CAS  PubMed  Google Scholar 

  9. Murakami T, Takamura M, Kim T, et al. Double phase CT during hepatic arteriography for diagnosis of hepatocellular carcinoma. Eur J Radiol. 2005;54:246–52.

    Article  PubMed  Google Scholar 

  10. Hayashi M, Matsui O, Ueda K, et al. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol. 1999;172:969–76.

    Article  CAS  PubMed  Google Scholar 

  11. Vogl TJ, Kümmel S, Hammerstingl R, et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology. 1996;200:59–67.

    Article  CAS  PubMed  Google Scholar 

  12. Huppertz A, Balzer T, Blakeborough A, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230:266–75.

    Article  PubMed  Google Scholar 

  13. Bluemke DA, Sahani D, Amendola M, et al. Efficacy and safety of MR imaging with liver-specific contrast agent: US multicenter phase III study. Radiology. 2005;237:89–98.

    Article  PubMed  Google Scholar 

  14. Huppertz A, Haraida S, Kraus A, et al. Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT–initial observations. Radiology. 2005;234:468–78.

    Article  PubMed  Google Scholar 

  15. Saito K, Kotake F, Ito N, et al. Gd-EOB-DTPA–enhanced MRI for hepatocellular carcinoma: quantitative evaluation of tumor enhancement in hepatobiliary phase. Magn Reson Med Sci. 2005;4:1–9.

    Article  PubMed  Google Scholar 

  16. Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, et al. Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology. 1992;183:59–64.

    Article  CAS  PubMed  Google Scholar 

  17. Hamm B, Staks T, Mühler A, et al. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology. 1995;195:785–92.

    Article  CAS  PubMed  Google Scholar 

  18. Ariizumi S, Kitagawa K, Kotera Y, et al. A non-smooth tumor margin in the hepatobiliary phase of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging predicts microscopic portal vein invasion, intrahepatic metastasis, and early recurrence after hepatectomy in patients with hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2011;18:575–85.

    Article  PubMed  Google Scholar 

  19. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–9.

    Article  CAS  PubMed  Google Scholar 

  20. Frericks BB, Loddenkemper C, Huppertz A, et al. Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA. AJR Am J Roentgenol. 2009;193:1053–60.

    Article  PubMed  Google Scholar 

  21. Liver Cancer Study Group of Japan. General rules for the clinical and pathological study of primary liver cancer. 3rd ed. Tokyo: Kanehara & Co., Ltd; 2010. p. 17–8.

    Google Scholar 

  22. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644–7.

    Article  PubMed  Google Scholar 

  23. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.

    Article  CAS  PubMed  Google Scholar 

  24. Kundel HL, Polansky M. Measurement of observer agreement. Radiology. 2003;228:303–8.

    Article  PubMed  Google Scholar 

  25. Nathan H, Raut CP, Thornton K, et al. Predictors of survival after resection of retroperitoneal sarcoma: a population-based analysis and critical appraisal of the AJCC staging system. Ann Surg. 2009;250:970–6.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ikai I, Arii S, Kojiro M, et al. Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma in a Japanese nationwide survey. Cancer. 2004;101:796–802.

    Article  PubMed  Google Scholar 

  27. Grazi GL, Cescon M, Ravaioli M, et al. Liver resection for hepatocellular carcinoma in cirrhotics and noncirrhotics. Evaluation of clinicopathologic features and comparison of risk factors for long-term survival and tumour recurrence in a single centre. Aliment Pharmacol Ther. 2003;17(Suppl 2):119–29.

    Article  PubMed  Google Scholar 

  28. Eguchi S, Takatsuki M, Hidaka M, et al. Predictor for histological microvascular invasion of hepatocellular carcinoma: a lesson from 229 consecutive cases of curative liver resection. World J Surg. 2010;34:1034–8.

    Article  PubMed  Google Scholar 

  29. Pawlik TM, Poon RT, Abdalla EK, et al. International Cooperative Study Group on Hepatocellular Carcinoma. Critical appraisal of the clinical and pathologic predictors of survival after resection of large hepatocellular carcinoma. Arch Surg. 2005;140:450–7.

    Article  PubMed  Google Scholar 

  30. Nakashima Y, Nakashima O, Tanaka M, et al. Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type. Hepatol Res. 2003;26:142–7.

    Article  PubMed  Google Scholar 

  31. Yamamoto M, Takasaki K, Ohtsubo T, et al. Effectiveness of systematized hepatectomy with Glisson’s pedicle transection at the hepatic hilus for small nodular hepatocellular carcinoma: retrospective analysis. Surgery. 2001;130:443–8.

    Article  CAS  PubMed  Google Scholar 

  32. Reimer P, Rummeny EJ, Shamsi K, et al. Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology. 1996;199:177–83.

    Article  CAS  PubMed  Google Scholar 

  33. Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol. 2010;20:2405–13.

    Article  PubMed  Google Scholar 

  34. Okada M, Imai Y, Kim T, et al. Comparison of enhancement patterns of histologically confirmed hepatocellular carcinoma between gadoxetate- and ferucarbotran-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2010;32:903–13.

    Article  PubMed  Google Scholar 

  35. Fujinaga Y, Kadoya M, Kozaka K, et al. Prediction of macroscopic findings of hepatocellular carcinoma on hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging: correlation with pathology. Hepatol Res. 2013;43:488–94.

    Article  CAS  PubMed  Google Scholar 

  36. Kubota K, Tamura T, Aoyama N, et al. Correlation of liver parenchymal gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid enhancement and liver function in humans with hepatocellular carcinoma. Oncol Lett. 2012;3:990–4.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Tada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, T., Kumada, T., Toyoda, H. et al. Diagnostic accuracy for macroscopic classification of nodular hepatocellular carcinoma: comparison of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and angiography-assisted computed tomography. J Gastroenterol 50, 85–94 (2015). https://doi.org/10.1007/s00535-014-0947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-0947-x

Keywords

Navigation