Skip to main content

Advertisement

Log in

Gastric sensitivity and reflexes: basic mechanisms underlying clinical problems

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Both reflex and sensory mechanisms control the function of the stomach, and disturbances in these mechanisms may explain the pathophysiology of disorders of gastric function. The objective of this report is to perform a literature-based critical analysis of new, relevant or conflicting information on gastric sensitivity and reflexes, with particular emphasis on the comprehensive integration of basic and clinical research data. The stomach exerts both phasic and tonic muscular (contractile and relaxatory) activity. Gastric tone determines the capacity of the stomach and mediates both gastric accommodation to a meal as well as gastric emptying, by partial relaxation or progressive recontraction, respectively. Perception and reflex afferent pathways from the stomach are activated independently by specific stimuli, suggesting that the terminal nerve endings operate as specialized receptors. Particularly, perception appears to be related to stimulation of tension receptors, while the existence of volume receptors in the stomach is uncertain. Reliable techniques have been developed to measure gastric perception and reflexes both in experimental and clinical conditions, and have facilitated the identification of abnormal responses in patients with gastric disorders. Gastroparesis is characterised by impaired gastric tone and contractility, whereas patients with functional dyspepsia have impaired accommodation, associated with antral distention and increased gastric sensitivity. An integrated view of fragmented knowledge allows the design of pathophysiological models in an attempt to explain disorders of gastric function, and may facilitate the development of mechanistically orientated treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ehrlein HJ, Schemann M. Influence of food constituents. In: Van Nueten JM, Schuurkes JAJ, Akkermans LMA, editors. Gastro-pyloro-duodenal coordination. Petersfield: Wrightson Biomedical Publishing Ltd; 1990. p. 139–51.

    Google Scholar 

  2. Code CF, Marlett JA. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol. 1975;246:289–309.

    CAS  PubMed  Google Scholar 

  3. Feinle-Bisset C, O’Donovan DG, Horowitz M. Gastric motility. In: Johnson LR, editor. Encyclopedia of Gastroenterology. USA: Elsevier; 2004. p. 132–8.

    Google Scholar 

  4. Azpiroz F, Malagelada JR. Intestinal control of gastric tone. Am J Physiol. 1985;249:G501–9.

    CAS  PubMed  Google Scholar 

  5. Faas H, Hebbard GS, Feinle C, et al. Pressure-geometry relationship in the antroduodenal region in humans. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1214–20.

    CAS  PubMed  Google Scholar 

  6. Heddle R, Collins PJ, Dent J, et al. Motor mechanisms associated with slowing of the gastric emptying of a solid meal by an intraduodenal lipid infusion. J Gastroenterol Hepatol. 1989;4:437–47.

    CAS  PubMed  Google Scholar 

  7. Malagelada Prats C, Mendez S, Accarino AM, et al. Digestive, cognitive and hedonistic responses to meal ingestion. Neurogastroenterol Motil. 2012;24(Suppl s2):98.

    Google Scholar 

  8. Parkman HP, Hasler WL, Fisher RS. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004;127:1592–622.

    PubMed  Google Scholar 

  9. Miwa H. Why dyspepsia can occur without organic disease: pathogenesis and management of functional dyspepsia. J Gastroenterol. 2012;47:862–71.

    PubMed  Google Scholar 

  10. Feinle-Bisset C, Azpiroz F. Dietary and lifestyle factors in functional dyspepsia. Nat Rev Gastroenterol Hepatol. 2013;10:150–7.

    CAS  PubMed  Google Scholar 

  11. Tack J, Talley NJ, Camilleri M, et al. Functional gastroduodenal disorders. Gastroenterology. 2006;130:1466–79.

    PubMed  Google Scholar 

  12. Azpiroz F, Tack J. Gastric disorders. In: Spiller R, Grundy D, editors. Pathophysiology of the enteric nervous system: a basis for understanding functional diseases. USA: Wiley-Blackwell; 2004. p. 126–33.

  13. Quartero AO, de Wit NJ, Lodder AC, et al. Disturbed solid-phase gastric emptying in functional dyspepsia: a meta-analysis. Dig Dis Sci. 1998;43:2028–33.

    CAS  PubMed  Google Scholar 

  14. Stevens JE, Jones KL, Rayner CK, et al. Pathophysiology and pharmacotherapy of gastroparesis: current and future perspectives. Expert Opin Pharmacother. 2013;14:1171–86.

    CAS  PubMed  Google Scholar 

  15. Sturm A, Holtmann G, Goebell H, et al. Prokinetics in patients with gastroparesis: a systematic analysis. Digestion. 1999;60:422–7.

    CAS  PubMed  Google Scholar 

  16. Tack J, Bisschops R, Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004;127:1239–55.

    PubMed  Google Scholar 

  17. Stanghellini V, Tosetti C, Paternico A, et al. Risk indicators of delayed gastric emptying of solids in patients with functional dyspepsia. Gastroenterology. 1996;110:1036–42.

    CAS  PubMed  Google Scholar 

  18. Azpiroz F, Malagelada JR. Gastric tone measured by an electronic barostat in health and postsurgical gastroparesis. Gastroenterology. 1987;92:934–43.

    CAS  PubMed  Google Scholar 

  19. Tack J. The difficult patient with gastroparesis. Best Pract Res Clin Gastroenterol. 2007;21:379–91.

    PubMed  Google Scholar 

  20. Delgado-Aros S, Camilleri M, Cremonini F, et al. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology. 2004;127:1685–94.

    PubMed  Google Scholar 

  21. Sarnelli G, Caenepeel P, Geypens B, et al. Symptoms associated with impaired gastric emptying of solids and liquids in functional dyspepsia. Am J Gastroenterol. 2003;98:783–8.

    PubMed  Google Scholar 

  22. Piessevaux H, Tack J, Walrand S, et al. Intragastric distribution of a standardized meal in health and functional dyspepsia: correlation with specific symptoms. Neurogastroenterol Motil. 2003;15:447–55.

    CAS  PubMed  Google Scholar 

  23. Tack J, Bisschops R. Mechanisms underlying meal-induced symptoms in functional dyspepsia. Gastroenterology. 2004;127:1844–7.

    PubMed  Google Scholar 

  24. Azpiroz F, Malagelada JR. Physiological variations in canine gastric tone measured by an electronic barostat. Am J Physiol. 1985;248:G229–37.

    CAS  PubMed  Google Scholar 

  25. Caldarella MP, Azpiroz F, Malagelada JR. Antro-fundic dysfunctions in functional dyspepsia. Gastroenterology. 2003;124:1220–9.

    PubMed  Google Scholar 

  26. Lee KJ, Vos R, Janssens J, et al. Differences in the sensorimotor response to distension between the proximal and distal stomach in humans. Gut. 2004;53:938–43.

    PubMed  Google Scholar 

  27. Szurszewski JH. Electrical basis for gastrointestinal motility. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven Press; 1981. p. 1435–66.

    Google Scholar 

  28. Azpiroz F, Malagelada JR. Pressure activity patterns in the canine proximal stomach: response to distension. Am J Physiol. 1984;247:G265–72.

    CAS  PubMed  Google Scholar 

  29. Cuomo R, Vandaele P, Coulie B, et al. Influence of motilin on gastric fundus tone and on meal-induced satiety in man: role of cholinergic pathways. Am J Gastroenterol. 2006;101:804–11.

    PubMed  Google Scholar 

  30. Simren M, Vos R, Janssens J, et al. Unsuppressed postprandial phasic contractility in the proximal stomach in functional dyspepsia: relevance to symptoms. Am J Gastroenterol. 2003;98:2169–75.

    PubMed  Google Scholar 

  31. Carrasco M, Azpiroz F, Malagelada JR. Modulation of gastric accommodation by duodenal nutrients. World J Gastroenterol. 2005;11:4848–51.

    CAS  PubMed  Google Scholar 

  32. Feinle C, Christen M, Grundy D, et al. Effects of duodenal fat, protein or mixed-nutrient infusions on epigastric sensations during sustained gastric distension in healthy humans. Neurogastroenterol Motil. 2002;14:205–13.

    CAS  PubMed  Google Scholar 

  33. Feinle C, Rades T, Otto B, et al. Fat digestion modulates gastrointestinal sensations induced by gastric distention and duodenal lipid in humans. Gastroenterology. 2001;120:1100–7.

    CAS  PubMed  Google Scholar 

  34. Di Stefano M, Vos R, Klersy C, et al. Neostigmine-induced postprandial phasic contractility in the proximal stomach and dyspepsia-like symptoms in healthy volunteers. Am J Gastroenterol. 2006;101:2797–804.

    PubMed  Google Scholar 

  35. Azpiroz F, Malagelada JR. Vagally mediated gastric relaxation induced by intestinal nutrients in the dog. Am J Physiol. 1986;251:G727–35.

    CAS  PubMed  Google Scholar 

  36. Azpiroz F, Malagelada JR. Importance of vagal input in maintaining gastric tone in the dog. J Physiol. 1987;384:511–24.

    CAS  PubMed  Google Scholar 

  37. Barbier AJ, Lefebvre RA. Involvement of the l-arginine: nitric oxide pathway in nonadrenergic noncholinergic relaxation of the cat gastric fundus. J Pharmacol Exp Ther. 1993;266:172–8.

    CAS  PubMed  Google Scholar 

  38. Desai KM, Sessa WC, Vane JR. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991;351:477–9.

    CAS  PubMed  Google Scholar 

  39. Grider JR, Cable MB, Said SI, et al. Vasoactive intestinal peptide as a neural mediator of gastric relaxation. Am J Physiol. 1985;248:G73–8.

    CAS  PubMed  Google Scholar 

  40. Grundy D, Gharib-Naseri MK, Hutson D. Role of nitric oxide and vasoactive intestinal polypeptide in vagally mediated relaxation of the gastric corpus in the anaesthetized ferret. J Auton Nerv Syst. 1993;43:241–6.

    CAS  PubMed  Google Scholar 

  41. Li CG, Rand MJ. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990;191:303–9.

    CAS  PubMed  Google Scholar 

  42. Meulemans AL, Eelen JG, Schuurkes JA. NO mediates gastric relaxation after brief vagal stimulation in anesthetized dogs. Am J Physiol. 1995;269:G255–61.

    CAS  PubMed  Google Scholar 

  43. Takahashi T, Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol. 1995;484(Pt 2):481–92.

    CAS  PubMed  Google Scholar 

  44. Tonini M, De Giorgio R, De Ponti F, et al. Role of nitric oxide- and vasoactive intestinal polypeptide-containing neurones in human gastric fundus strip relaxations. Br J Pharmacol. 2000;129:12–20.

    CAS  PubMed  Google Scholar 

  45. Kuiken SD, Vergeer M, Heisterkamp SH, et al. Role of nitric oxide in gastric motor and sensory functions in healthy subjects. Gut. 2002;51:212–8.

    CAS  PubMed  Google Scholar 

  46. Tack J, Demedts I, Meulemans A, et al. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut. 2002;51:219–24.

    CAS  PubMed  Google Scholar 

  47. De Ponti F, Azpiroz F, Malagelada JR. Reflex gastric relaxation in response to distention of the duodenum. Am J Physiol. 1987;252:G595–601.

    PubMed  Google Scholar 

  48. Andrews PL, Scratcherd T. The gastric motility patterns induced by direct and reflex excitation of the vagus nerves in the anaesthetized ferret. J Physiol. 1980;302:363–78.

    CAS  PubMed  Google Scholar 

  49. Troncon LE, Thompson DG, Ahluwalia NK, et al. Relations between upper abdominal symptoms and gastric distension abnormalities in dysmotility like functional dyspepsia and after vagotomy. Gut. 1995;37:17–22.

    CAS  PubMed  Google Scholar 

  50. Farre R, Tack J. Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol. 2013;108:698–706.

    PubMed  Google Scholar 

  51. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut. 2002;51(Suppl 1):i2–5.

    PubMed  Google Scholar 

  52. de Jonge WJ, van den Wijngaard RM, The FO, et al. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology. 2003;125:1137–47.

    PubMed  Google Scholar 

  53. Andrews PL, Sanger GJ. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr Opin Pharmacol. 2002;2:650–6.

    CAS  PubMed  Google Scholar 

  54. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev. 2004;27:729–37.

    CAS  PubMed  Google Scholar 

  55. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85:1–17.

    CAS  PubMed  Google Scholar 

  56. Stewart JE, Feinle-Bisset C, Keast RS. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog Lipid Res. 2011;50:225–33.

    CAS  PubMed  Google Scholar 

  57. Grundy D. What activates visceral afferents? Gut. 2004;53(Suppl 2):ii5–8.

    CAS  PubMed  Google Scholar 

  58. Blackshaw LA, Grundy D, Scratcherd T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of the ferret corpus. J Auton Nerv Syst. 1987;18:19–24.

    CAS  PubMed  Google Scholar 

  59. Ozaki N, Gebhart GF. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1449–59.

    CAS  PubMed  Google Scholar 

  60. Ozaki N, Sengupta JN, Gebhart GF. Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol. 1999;82:2210–20.

    CAS  PubMed  Google Scholar 

  61. Bielefeldt K, Ozaki N, Gebhart GF. Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology. 2002;122:752–61.

    CAS  PubMed  Google Scholar 

  62. Vandenberghe J, Vos R, Persoons P, et al. Dyspeptic patients with visceral hypersensitivity: sensitisation of pain specific or multimodal pathways? Gut. 2005;54:914–9.

    CAS  PubMed  Google Scholar 

  63. Coffin B, Chollet R, Flourie B, et al. Intraluminal modulation of gastric sensitivity to distension: effects of hydrochloric acid and meal. Am J Physiol Gastrointest Liver Physiol. 2001;280:G904–9.

    CAS  PubMed  Google Scholar 

  64. Lee KJ, Vos R, Tack J. Effects of capsaicin on the sensorimotor function of the proximal stomach in humans. Aliment Pharmacol Ther. 2004;19:415–25.

    CAS  PubMed  Google Scholar 

  65. Holzer P. Taste receptors in the gastrointestinal tract. V. Acid sensing in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2007;292:G699–705.

    CAS  PubMed  Google Scholar 

  66. Powley TL, Phillips RJ. Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1217–25.

    CAS  PubMed  Google Scholar 

  67. Zagorodnyuk VP, Chen BN, Brookes SJ. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol. 2001;534:255–68.

    CAS  PubMed  Google Scholar 

  68. Distrutti E, Azpiroz F, Soldevilla A, et al. Gastric wall tension determines perception of gastric distention. Gastroenterology. 1999;116:1035–42.

    CAS  PubMed  Google Scholar 

  69. Notivol R, Coffin B, Azpiroz F, et al. Gastric tone determines the sensitivity of the stomach to distention. Gastroenterology. 1995;108:330–6.

    CAS  PubMed  Google Scholar 

  70. Piessevaux H, Tack J, Wilmer A, et al. Perception of changes in wall tension of the proximal stomach in humans. Gut. 2001;49:203–8.

    CAS  PubMed  Google Scholar 

  71. Feinle C, D’Amato M, Read NW. Cholecystokinin-A receptors modulate gastric sensory and motor responses to gastric distension and duodenal lipid. Gastroenterology. 1996;110:1379–85.

    CAS  PubMed  Google Scholar 

  72. Distrutti E, Salvioli B, Azpiroz F, et al. Rectal function and bowel habit in irritable bowel syndrome. Am J Gastroenterol. 2004;99:131–7.

    PubMed  Google Scholar 

  73. Harder H, Serra J, Azpiroz F, et al. Reflex control of intestinal gas dynamics and tolerance in humans. Am J Physiol Gastrointest Liver Physiol. 2004;286:G89–94.

    CAS  PubMed  Google Scholar 

  74. Serra J, Azpiroz F, Malagelada JR. Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology. 1995;109:1742–9.

    CAS  PubMed  Google Scholar 

  75. Khan MI, Read NW, Grundy D. Effect of varying the rate and pattern of gastric distension on its sensory perception and motor activity. Am J Physiol. 1993;264:G824–7.

    CAS  PubMed  Google Scholar 

  76. Morrison JF. Splanchnic slowly adapting mechanoreceptors with punctate receptive fields in the mesentery and gastrointestinal tract of the cat. J Physiol. 1973;233:349–61.

    CAS  PubMed  Google Scholar 

  77. Miller SM, Szurszewski JH. Colonic mechanosensory afferent input to neurons in the mouse superior mesenteric ganglion. Am J Physiol. 1997;272:G357–66.

    CAS  PubMed  Google Scholar 

  78. Miller SM, Szurszewski JH. Relationship between colonic motility and cholinergic mechanosensory afferent synaptic input to mouse superior mesenteric ganglion. Neurogastroenterol Motil. 2002;14:339–48.

    CAS  PubMed  Google Scholar 

  79. De Wever I, Eeckhout C, Vantrappen G, et al. Disruptive effect of test meals on interdigestive motor complex in dogs. Am J Physiol. 1978;235:E661–5.

    PubMed  Google Scholar 

  80. Rees WD, Malagelada JR, Miller LJ, et al. Human interdigestive and postprandial gastrointestinal motor and gastrointestinal hormone patterns. Dig Dis Sci. 1982;27:321–9.

    CAS  PubMed  Google Scholar 

  81. Barbera R, Feinle C, Read NW. Abnormal sensitivity to duodenal lipid infusion in patients with functional dyspepsia. Eur J Gastroenterol Hepatol. 1995;7:1051–7.

    CAS  PubMed  Google Scholar 

  82. Coffin B, Azpiroz F, Guarner F, et al. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology. 1994;107:1345–51.

    CAS  PubMed  Google Scholar 

  83. Tack J, Piessevaux H, Coulie B, et al. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology. 1998;115:1346–52.

    CAS  PubMed  Google Scholar 

  84. Moragas G, Azpiroz F, Pavia J, et al. Relations among intragastric pressure, postcibal perception, and gastric emptying. Am J Physiol. 1993;264:G1112–7.

    CAS  PubMed  Google Scholar 

  85. Caldarella MP, Azpiroz F, Malagelada JR. Selective effects of nutrients on gut sensitivity and reflexes. Gut. 2007;56:37–42.

    CAS  PubMed  Google Scholar 

  86. Azpiroz F, Salvioli B. Barostat measurements. In: Schuster MM, Crowel MD, Koch KL, editors. Schuster Atlas of Gastrointestinal Motility in Health and Disease. Hamilto: BC Decker; 2002. p. 151–70.

    Google Scholar 

  87. Troncon LE, Bennett RJ, Ahluwalia NK, et al. Abnormal intragastric distribution of food during gastric emptying in functional dyspepsia patients. Gut. 1994;35:327–32.

    CAS  PubMed  Google Scholar 

  88. Grundy D, Hutson D, Rudge LJ, et al. Pre-pyloric mechanisms regulating gastric motor function in the conscious dog. Q J Exp Physiol. 1989;74:857–65.

    CAS  PubMed  Google Scholar 

  89. Villanova N, Azpiroz F, Malagelada JR. Gastrogastric reflexes regulating gastric tone and their relationship to perception. Am J Physiol. 1997;273:G464–9.

    CAS  PubMed  Google Scholar 

  90. Feinle C, Grundy D, Read NW. Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. Am J Physiol. 1997;273:G721–6.

    CAS  PubMed  Google Scholar 

  91. Feinle C, Meier O, Otto B, et al. Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut. 2001;48:347–55.

    CAS  PubMed  Google Scholar 

  92. Demarchi B, Vos R, Deprez P, et al. Influence of a lipase inhibitor on gastric sensitivity and accommodation to an orally ingested meal. Aliment Pharmacol Ther. 2004;19:1261–8.

    CAS  PubMed  Google Scholar 

  93. Villanova N, Azpiroz F, Malagelada JR. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J Physiol. 1997;502(Pt 1):215–22.

    CAS  PubMed  Google Scholar 

  94. Azpiroz F, Malagelada JR. Isobaric intestinal distension in humans: sensorial relay and reflex gastric relaxation. Am J Physiol. 1990;258:G202–7.

    CAS  PubMed  Google Scholar 

  95. Barbera R, Feinle C, Read NW. Nutrient-specific modulation of gastric mechanosensitivity in patients with functional dyspepsia. Dig Dis Sci. 1995;40:1636–41.

    CAS  PubMed  Google Scholar 

  96. Lee KJ, Vos R, Janssens J, et al. Influence of duodenal acidification on the sensorimotor function of the proximal stomach in humans. Am J Physiol Gastrointest Liver Physiol. 2004;286:G278–84.

    CAS  PubMed  Google Scholar 

  97. Saperas E, Azpiroz F, Cucala M, et al. Postcibal secretory and symptomatic responses to increased intragastric pressure. Neurogastroenterol Motil. 1994;6:295–301.

    Google Scholar 

  98. Rao SS, Vemuri S, Harris B, et al. Fundic balloon distension stimulates antral and duodenal motility in man. Dig Dis Sci. 2002;47:1015–9.

    PubMed  Google Scholar 

  99. Azpiroz F. Hypersensitivity in functional gastrointestinal disorders. Gut. 2002;51(Suppl 1):i25–8.

    PubMed  Google Scholar 

  100. Ladabaum U, Minoshima S, Hasler WL, et al. Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology. 2001;120:369–76.

    CAS  PubMed  Google Scholar 

  101. Ladabaum U, Roberts TP, McGonigle DJ. Gastric fundic distension activates fronto-limbic structures but not primary somatosensory cortex: a functional magnetic resonance imaging study. Neuroimage. 2007;34:724–32.

    PubMed  Google Scholar 

  102. Vandenbergh J, Dupont P, Fischler B, et al. Regional brain activation during proximal stomach distention in humans: a positron emission tomography study. Gastroenterology. 2005;128:564–73.

    PubMed  Google Scholar 

  103. Stasi C, Rosselli M, Bellini M, et al. Altered neuro-endocrine-immune pathways in the irritable bowel syndrome: the top-down and the bottom-up model. J Gastroenterol. 2012;47:1177–85.

    CAS  PubMed  Google Scholar 

  104. Boeckxstaens GE, Hirsch DP, Kuiken SD, et al. The proximal stomach and postprandial symptoms in functional dyspeptics. Am J Gastroenterol. 2002;97:40–8.

    CAS  PubMed  Google Scholar 

  105. Mearin F, Cucala M, Azpiroz F, et al. The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology. 1991;101:999–1006.

    CAS  PubMed  Google Scholar 

  106. Accarino AM, Azpiroz F, Malagelada JR. Symptomatic responses to stimulation of sensory pathways in the jejunum. Am J Physiol. 1992;263:G673–7.

    CAS  PubMed  Google Scholar 

  107. Accarino AM, Azpiroz F, Malagelada JR. Selective dysfunction of mechanosensitive intestinal afferents in irritable bowel syndrome. Gastroenterology. 1995;108:636–43.

    CAS  PubMed  Google Scholar 

  108. Serra J, Azpiroz F, Malagelada JR. Modulation of gut perception in humans by spatial summation phenomena. J Physiol. 1998;506(Pt 2):579–87.

    CAS  PubMed  Google Scholar 

  109. Accarino AM, Azpiroz F, Malagelada JR. Gut perception in humans is modulated by interacting gut stimuli. Am J Physiol Gastrointest Liver Physiol. 2002;282:G220–5.

    CAS  PubMed  Google Scholar 

  110. Rouillon JM, Azpiroz F, Malagelada JR. Reflex changes in intestinal tone: relationship to perception. Am J Physiol. 1991;261:G280–6.

    CAS  PubMed  Google Scholar 

  111. Rouillon JM, Azpiroz F, Malagelada JR. Sensorial and intestinointestinal reflex pathways in the human jejunum. Gastroenterology. 1991;101:1606–12.

    CAS  PubMed  Google Scholar 

  112. Tack J, Caenepeel P, Corsetti M, et al. Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology. 2004;127:1058–66.

    PubMed  Google Scholar 

  113. Accarino AM, Azpiroz F, Malagelada JR. Modification of small bowel mechanosensitivity by intestinal fat. Gut. 2001;48:690–5.

    CAS  PubMed  Google Scholar 

  114. Lee KJ, Demarchi B, Demedts I, et al. A pilot study on duodenal acid exposure and its relationship to symptoms in functional dyspepsia with prominent nausea. Am J Gastroenterol. 2004;99:1765–73.

    PubMed  Google Scholar 

  115. Samsom M, Verhagen MA, van Berge Henegouwen GP. Abnormal clearance of exogenous acid and increased acid sensitivity of the proximal duodenum in dyspeptic patients. Gastroenterology. 1999;116:515–20.

    CAS  PubMed  Google Scholar 

  116. Schwartz MP, Samsom M, Smout AJ. Chemospecific alterations in duodenal perception and motor response in functional dyspepsia. Am J Gastroenterol. 2001;96:2596–602.

    CAS  PubMed  Google Scholar 

  117. Oshima T, Okugawa T, Tomita T, et al. Generation of dyspeptic symptoms by direct acid and water infusion into the stomachs of functional dyspepsia patients and healthy subjects. Aliment Pharmacol Ther. 2012;35:175–82.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gloria Santaliestra for secretarial assistance. Jan Tack is supported by a Methusalem grant from Leuven University. Supported in part by the Spanish Ministry of Education (Dirección General de Investigación, SAF 2009-07416). Ciberehd is funded by the Instituto de Salud Carlos III. CFB acknowledges support by a National Health and Medical Research Council of Australia Senior Research Fellowship (grant no 627002, 2010–2014).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Azpiroz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azpiroz, F., Feinle-Bisset, C., Grundy, D. et al. Gastric sensitivity and reflexes: basic mechanisms underlying clinical problems. J Gastroenterol 49, 206–218 (2014). https://doi.org/10.1007/s00535-013-0917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0917-8

Keywords

Navigation