Journal of Gastroenterology

, Volume 49, Issue 10, pp 1378–1391 | Cite as

Functions and regulation of MUC13 mucin in colon cancer cells

  • Brij K. Gupta
  • Diane M. Maher
  • Mara C. Ebeling
  • Phillip D. Stephenson
  • Susan E. Puumala
  • Michael R. Koch
  • Hiroyuki Aburatani
  • Meena Jaggi
  • Subhash C. Chauhan
Original Article—Alimentary Tract



MUC13 is overexpressed and aberrantly localized in colon cancer tissue; however, the specific functions and regulation of MUC13 expression are unknown.


Stable cell lines with either overexpressed or suppressed MUC13 levels were analyzed to determine cell growth, colony formation, cell migration, and cell invasion assays. The molecular mechanisms involved in MUC13 regulation were elucidated via chromatin immunoprecipitation (ChIP) and analysis of interleukin 6 (IL6) treatments. Colon cancer tissues were analyzed by immunohistochemistry (IHC) for the protein levels of MUC13 and P-STAT5 in colon cancer cells.


Overexpression of MUC13 increased cell growth, colony formation, cell migration, and invasion. In concordance, MUC13 silencing decreased these tumorigenic features. Overexpression of MUC13 also modulated various cancer-associated proteins, including telomerase reverse transcriptase, sonic hedgehog, B cell lymphoma murine like site 1, and GATA like transcription factor 1. Additionally, MUC13-overexpressing cells showed increased HER2 and P-ERK expression. ChIP analysis revealed binding of STAT5 to the predicted MUC13 promoter. IL6 treatment of colon cancer cells increased the expression of MUC13 via activation of the JAK2/STAT5 signaling pathway. Suppression of JAK2 and STAT5 signaling by chemical inhibitors abolished IL6-induced MUC13 expression. IHC analysis showed increased expression of both P-STAT5 and MUC13 in colon cancer as compared to adjacent normal tissue.


The results of this study, for the first time, suggest functional roles of MUC13 in colon cancer progression and provide information regarding the regulation of MUC13 expression via JAK2/STAT5 which may reveal promising therapeutic approaches for colon cancer treatment.


IL6 MUC13 regulation Transcription factors JAK2/STAT5 

Supplementary material

535_2013_885_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)
535_2013_885_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)
535_2013_885_MOESM3_ESM.tif (1 mb)
Supplementary material 3 (TIFF 1072 kb)


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer. 1994;57(2):198–203.PubMedCrossRefGoogle Scholar
  5. 5.
    Ogata S, Uehara H, Chen A, Itzkowitz SH. Mucin gene expression in colonic tissues and cell lines. Cancer Res. 1992;52(21):5971–8.PubMedGoogle Scholar
  6. 6.
    Devine PL, Birrell GW, Whitehead RH, Harada H, Xing PX, McKenzie IF. Expression of MUC1 and MUC2 mucins by human tumor cell lines. Tumour Biol. 1992;13(5–6):268–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta BK, Maher DM, Ebeling MC, Sundram V, Koch MD, Lynch DW, et al. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. J Histochem Cytochem. 2012;60(11):822–31.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, et al. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther. 2012;11(1):24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Maher DM, Gupta BK, Nagata S, Jaggi M, Chauhan SC. Mucin 13: structure, function, and potential roles in cancer pathogenesis. Mol Cancer Res. 2011;9(5):531–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Walsh MD, Young JP, Leggett BA, Williams SH, Jass JR, McGuckin MA. The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Hum Pathol. 2007;38(6):883–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Packer LM, Williams SJ, Callaghan S, Gotley DC, McGuckin MA. Expression of the cell surface mucin gene family in adenocarcinomas. Int J Oncol. 2004;25(4):1119–26.PubMedGoogle Scholar
  12. 12.
    Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001;276(21):18327–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Chauhan SC, Vannatta K, Ebeling MC, Vinayek N, Watanabe A, Pandey KK, et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 2009;69(3):765–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Shimamura T, Ito H, Shibahara J, Watanabe A, Hippo Y, Taniguchi H, et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 2005;96(5):265–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Rainczuk A, Rao J, Gathercole J, Stephens AN. The emerging role of CXC chemokines in epithelial ovarian cancer. Reproduction. 2012;144(3):303–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci. 2012;17:2306–26.CrossRefGoogle Scholar
  17. 17.
    Knupfer H, Schmidt R, Stanitz D, Brauckhoff M, Schonfelder M, Preiss R. CYP2C and IL-6 expression in breast cancer. Breast. 2004;13(1):28–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SO, Lou W, Johnson CS, Trump DL, Gao AC. Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate. 2004;60(3):178–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Matsuo K, Oka M, Murase K, Soda H, Isomoto H, Takeshima F, et al. Expression of interleukin 6 and its receptor in human gastric and colorectal cancers. J Int Med Res. 2003;31(2):69–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Azevedo A, Cunha V, Teixeira AL, Medeiros R. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol. 2011;2(12):384–96.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Schafer ZT, Brugge JS. IL-6 involvement in epithelial cancers. J Clin Investig. 2007;117(12):3660–3.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Janssen EA, Slewa A, Gudlaugsson E, Jonsdottir K, Skaland I, Soiland H, et al. Biologic profiling of lymph node negative breast cancers by means of microRNA expression. Modern Pathol. 2010;23(12):1567–76.CrossRefGoogle Scholar
  24. 24.
    Koptyra M, Gupta S, Talati P, Nevalainen MT. Signal transducer and activator of transcription 5a/b: biomarker and therapeutic target in prostate and breast cancer. Int J Biochem Cell Biol. 2011;43(10):1417–21.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Shi M, Cooper JC, Yu CL. A constitutively active Lck kinase promotes cell proliferation and resistance to apoptosis through signal transducer and activator of transcription 5b activation. Mol Cancer Res. 2006;4(1):39–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Tormo AJ, Letellier MC, Sharma M, Elson G, Crabe S, Gauchat JF. IL-6 activates STAT5 in T cells. Cytokine. 2012;60(2):575–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Pratt SL, Ogle CK, Mao JX, Zhao W, Lovell G, Horseman ND. Interleukin-6 signal transduction in human intestinal epithelial cells. Shock. 2000;13(6):435–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Piekorz RP, Nemetz C, Hocke GM. Members of the family of IL-6-type cytokines activate Stat5a in various cell types. Biochem Biophys Res Commun. 1997;236(2):438–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Du W, Wang YC, Hong J, Su WY, Lin YW, Lu R, et al. STAT5 isoforms regulate colorectal cancer cell apoptosis via reduction of mitochondrial membrane potential and generation of reactive oxygen species. J Cell Physiol. 2012;227(6):2421–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Mao YL, Li ZW, Lou CJ, Pang D, Zhang YQ. Phospho-STAT5 expression is associated with poor prognosis of human colonic adenocarcinoma. Pathol Oncol Res. 2011;17(2):333–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Leibovitz A, Stinson JC, McCombs WB 3rd, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976;36(12):4562–9.PubMedGoogle Scholar
  32. 32.
    Penna C, Nordlinger B. Colorectal metastasis (liver and lung). Surg Clin N Am. 2002;82(5):1075–90 x–xi.PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang L, Li J, Song L. Bmi-1, stem cells and cancer. Acta Biochim Biophys Sin. 2009;41(7):527–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Yu YL, Chiang YJ, Chen YC, Papetti M, Juo CG, Skoultchi AI, et al. MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. J Biol Chem. 2005;280(33):29533–42.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kuo YY, Chang ZF. GATA-1 and Gfi-1B interplay to regulate Bcl-xL transcription. Mol Cell Biol. 2007;27(12):4261–72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kopp R, Rothbauer E, Ruge M, Arnholdt H, Spranger J, Muders M, et al. Clinical implications of the EGF receptor/ligand system for tumor progression and survival in gastrointestinal carcinomas: evidence for new therapeutic options. Recent Results Cancer Res. 2003;162:115–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Tong WM, Ellinger A, Sheinin Y, Cross HS. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells. Br J Cancer. 1998;77(11):1792–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hayashi Y, Widjono YW, Ohta K, Hanioka K, Obayashi C, Itoh K, et al. Expression of EGF, EGF-receptor, p53, v-erb B and ras p21 in colorectal neoplasms by immunostaining paraffin-embedded tissues. Pathol Int. 1994;44(2):124–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Menard S, Casalini P, Campiglio M, Pupa S, Agresti R, Tagliabue E. HER2 overexpression in various tumor types, focussing on its relationship to the development of invasive breast cancer. Ann Oncol. 2001;12(Suppl 1):S15–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Lu Y, Jingyan G, Baorong S, Peng J, Xu Y, Cai S. Expression of EGFR, Her2 predict lymph node metastasis (LNM)-associated metastasis in colorectal cancer. Cancer Biomark. 2012;11(5):219–26.PubMedGoogle Scholar
  41. 41.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
  43. 43.
    Li YY, Hsieh LL, Tang RP, Liao SK, Yeh KY. Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum Immunol. 2009;70(3):151–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Waldner MJ, Foersch S, Neurath MF. Interleukin-6–a key regulator of colorectal cancer development. Int J Biol Sci. 2012;8(9):1248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, et al. Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol. 2010;184(3):1543–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, et al. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res. 2009;69(14):5876–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):77–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz B, Bresalier RS, Kim YS. The role of mucin in colon-cancer metastasis. Int J Cancer. 1992;52(1):60–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Bresalier RS, Niv Y, Byrd JC, Duh QY, Toribara NW, Rockwell RW, et al. Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Investig. 1991;87(3):1037–45.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Carraway KL, Ramsauer VP, Haq B, Carothers Carraway CA. Cell signaling through membrane mucins. BioEssays. 2003;25(1):66–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Oniscu A, James RM, Morris RG, Bader S, Malcomson RD, Harrison DJ. Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol. 2004;203(4):909–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshikawa K, Shimada M, Miyamoto H, Higashijima J, Miyatani T, Nishioka M, et al. Sonic hedgehog relates to colorectal carcinogenesis. J Gastroenterol. 2009;44(11):1113–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 2004;203(2):217–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX, et al. Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol. 2010;136(7):997–1006.PubMedCrossRefGoogle Scholar
  56. 56.
    Naito Y, Takagi T, Handa O, Ishikawa T, Matsumoto N, Yoshida N, et al. Telomerase activity and expression of telomerase RNA component and catalytic subunits in precancerous and cancerous colorectal lesions. Tumour Biol. 2001;22(6):374–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Ayanbule F, Belaguli NS, Berger DH. GATA factors in gastrointestinal malignancy. World J Surg. 2011;35(8):1757–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang YL, Pang LQ, Wu Y, Wang XY, Wang CQ, Fan Y. Significance of Bcl-xL in human colon carcinoma. World J Gastroenterol. 2008;14(19):3069–73.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Theodoropoulos G, Carraway KL. Molecular signaling in the regulation of mucins. J Cell Biochem. 2007;102(5):1103–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson EJ, Shanmugam K, Hattrup CL, Kotlarczyk KL, Gutierrez A, Bradley JM, et al. Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-kappaB pathways. Mol Cancer Res. 2006;4(7):489–97.PubMedCrossRefGoogle Scholar
  61. 61.
    Kondo S, Yoshizaki T, Wakisaka N, Horikawa T, Murono S, Jang KL, et al. MUC1 induced by Epstein-Barr virus latent membrane protein 1 causes dissociation of the cell-matrix interaction and cellular invasiveness via STAT signaling. J Virol. 2007;81(4):1554–62.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Mejias-Luque R, Peiro S, Vincent A, Van Seuningen I, de Bolos C. IL-6 induces MUC4 expression through gp130/STAT3 pathway in gastric cancer cell lines. Biochim Biophys Acta. 2008;1783(10):1728–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog. 2013;52(2):155–66.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Spano JP, Milano G, Rixe C, Fagard R. JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer. 2006;42(16):2668–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 2005;7(6):545–55.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Komoda H, Tanaka Y, Honda M, Matsuo Y, Hazama K, Takao T. Interleukin-6 levels in colorectal cancer tissues. World J Surg. 1998;22(8):895–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, et al. IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer. 2007;120(12):2600–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Jovanovic M, Vicovac L. Interleukin-6 stimulates cell migration, invasion and integrin expression in HTR-8/SVneo cell line. Placenta. 2009;30(4):320–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle. 2005;4(2):217–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Sheng YH, Triyana S, Wang R, Das I, Gerloff K, Florin TH, et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2012;6(3):557–68. Google Scholar
  71. 71.
    Mao Y, Li Z, Lou C, Zhang Y. Expression of phosphorylated Stat5 predicts expression of cyclin D1 and correlates with poor prognosis of colonic adenocarcinoma. Int J Colorectal Dis. 2011;26(1):29–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Xiong H, Su WY, Liang QC, Zhang ZG, Chen HM, Du W, et al. Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells. Lab Investig. 2009;89(6):717–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Brij K. Gupta
    • 1
    • 2
  • Diane M. Maher
    • 1
  • Mara C. Ebeling
    • 1
  • Phillip D. Stephenson
    • 3
  • Susan E. Puumala
    • 4
  • Michael R. Koch
    • 5
  • Hiroyuki Aburatani
    • 6
  • Meena Jaggi
    • 7
    • 2
  • Subhash C. Chauhan
    • 7
    • 2
  1. 1.Cancer Biology Research Center, Sanford Research/USDSioux FallsUSA
  2. 2.Basic Biomedical Science Division, Departments of Obstetrics and GynecologySanford School of Medicine, The University of South DakotaSioux FallsUSA
  3. 3.Laboratory Medicine and PathologySanford School of Medicine, The University of South DakotaSioux FallsUSA
  4. 4.Center for Health Outcomes and Prevention Research, Sanford ResearchSioux FallsUSA
  5. 5.Department of PathologySanford School of Medicine, The University of South DakotaSioux FallsUSA
  6. 6.Genome Science DivisionUniversity of TokyoTokyoJapan
  7. 7.Department of Pharmaceutical SciencesCancer Research Center, University of Tennessee Health Science CenterMemphisUSA

Personalised recommendations