Skip to main content

Advertisement

Log in

Oral nanotherapeutics: effect of redox nanoparticle on microflora in mice with dextran sodium sulfate-induced colitis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Patients with ulcerative colitis (UC) exhibit overproduction of reactive oxygen species (ROS) and imbalance of colonic microflora. We previously developed a novel redox nanoparticle (RNPO), which effectively scavenged ROS in the inflamed mucosa of mice with dextran sodium sulfate (DSS)-induced colitis after oral administration. The objective of this study was to examine whether the orally administered RNPO changed the colonic microflora in healthy mice and those with colitis.

Methods

RNPO was synthesized by self-assembly of an amphiphilic block copolymer that contains stable nitroxide radicals in hydrophobic side chain via ether linkage. Colitis was induced in mice by supplementing DSS in drinking water for 7 days, and RNPO was orally administered daily during DSS treatment. The alterations of fecal microflora during treatment of DSS and RNPO were investigated using microbiological assays.

Results

We investigated that RNPO did not result in significant changes to the fecal microflora in healthy mice. Although total aerobic and anaerobic bacteria were not significantly different between experimental groups, a remarkable increase in commensal bacteria (Escherichia coli and Staphylococcus sp.) was observed in mice with DSS-induced colitis. Interestingly, orally administered RNPO remarkably reduced the rate of increase of these commensal bacteria in mice with colitis.

Conclusions

On the basis of the obtained results, it was confirmed that the oral administration of RNPO did not change any composition of bacteria in feces, which strongly suggests a protective effect of RNPO on healthy environments in intestinal microflora. RNPO may become an effective and safe medication for treatment of UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  CAS  PubMed  Google Scholar 

  2. Edward VL. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–17.

    Article  Google Scholar 

  3. Simmonds NJ, Rampton DS. Inflammatory bowel disease: a radical view. Gut. 1993;34:865–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Babbs CF. Oxygen radicals in ulcerative colitis. Free Radic Biol Med. 1992;13:169–81.

    Article  CAS  PubMed  Google Scholar 

  5. Gionchetti P, Rizzello F, Lammers KM, Morselli C, Sollazzi L, Davies S, et al. Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol. 2006;12:3306–13.

    CAS  PubMed  Google Scholar 

  6. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nat Rev. 2011;44:307–17.

    Google Scholar 

  7. Sartor RB. The influence of normal microbial flora on the development of chronic inflammation. Res Immunol. 1997;148:567–76.

    Article  CAS  PubMed  Google Scholar 

  8. Strauch UG, Obermeier F, Grunwald N, Gürster S, Dunger N, Schultz M, et al. Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut. 2005;54:1546–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gibson GR, Roberfroid M. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–12.

    CAS  PubMed  Google Scholar 

  10. Sasaki M, Klapproth J. The role of bacteria in the pathogenesis of ulcerative colitis. J Signal Transduct. 2012; doi: 10.1155/2012/704953.

  11. Araki Y, Andoh A, Tsujikawa T, Fujiyama Y, Bamba T. Alterations in intestinal microflora, faecal bile acids and short chain fatty acids in dextran sulphate sodium-induced experimental acute colitis in rats. Eur J Gastroenterol Hepatol. 2011;13:107–12.

    Article  Google Scholar 

  12. Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology. 2012;143:1027–36.e3.

    PubMed  Google Scholar 

  13. Yoshitomi T, Miyamoto D, Nagasaki Y. Design of core-shell-type nanoparticles carrying stable radicals in the core. Biomacromolecules. 2009;10:596–601.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshitomi T, Nagasaki Y. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine. 2011;6:509–18.

    Article  CAS  PubMed  Google Scholar 

  15. Solomon L, Mansor S, Mallon P, Donnelly E, Hoper M, Loughrey M, et al. The dextran sulphate sodium (DSS) model of colitis: an overview. Comp Clin Pathol. 2010;19:235–9.

    Article  CAS  Google Scholar 

  16. Van der Waaij LA, Harmsen HJ, Madjipour M, Kroese FG, Zwiers M, van Dullemen HM, et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis. 2005;10:865–71.

    Article  Google Scholar 

  17. Xia Y, Chen HQ, Zhang M, Jiang YQ, Hang XM, Qin HL. Effect of Lactobacillus plantarum LP-Only on gut flora and colitis in interleukin-10 knockout mice. J Gastroenterol Hepatol. 2011;26:405–11.

    Article  CAS  PubMed  Google Scholar 

  18. Vereecke L, Sze M, Mc Guire C, Rogiers B, Chu Y, Schmidt-Supprian M, et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med. 2010;207:1513–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Friend DR, Sellin J. Drug delivery in advancing the treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57:215–6.

    Article  CAS  Google Scholar 

  20. Hanauer SB. Medical therapy for ulcerative colitis 2004. Gastroenterology. 2004;126:1582–92.

    Article  PubMed  Google Scholar 

  21. Swidsinski A, Loening-Baucke V, Bengmark S, Lochs H, Dörffel Y. Azathioprine and mesalazine-induced effects on the mucosal flora in patients with IBD colitis. Inflamm Bowel Dis. 2007;1:51–6.

    Article  Google Scholar 

  22. West B, Lendrum R, Hill MJ, Walker G. Effects of sulphasalazine (Salazopyrin) on faecal flora in patients with inflammatory bowel disease. Gut. 1974;15:960–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Singh K, Chaturvedi R, Barry DP, Coburn LA, Asim M, Lewis ND, et al. The apolipoprotein E-mimetic peptide COG112 inhibits NF-kappaB signaling, proinflammatory cytokine expression, and disease activity in murine models of colitis. J Biol Chem. 2011;286:3839–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55:403–19.

    Article  CAS  PubMed  Google Scholar 

  25. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 2003;52:988–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2 + D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu J, Wang A, Ansari S, Hershberg RM, McKay DM. Colonic bacterial superantigens evoke an inflammatory response and exaggerate disease in mice recovering from colitis. Gastroenterology. 2003;125:1785–95.

    Article  CAS  PubMed  Google Scholar 

  28. Vesterlund S, Karp M, Salminen S, Ouwehand AC. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology. 2006;152:1819–26.

    Article  CAS  PubMed  Google Scholar 

  29. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–72.

    Article  CAS  PubMed  Google Scholar 

  30. Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140:1729–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hans W, Schölmerich J, Gross V, Falk W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur J Gastroenterol Hepatol. 2000;12:267–73.

    Article  CAS  PubMed  Google Scholar 

  32. Johansson ME, Gustafsson JK, Sjöberg KE, Petersson J, Holm L, Sjövall H, et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS ONE. 2010;5:e12238.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zhou FX, Chen L, Liu XW, Ouyang CH, Wu XP, Wang XH, et al. Lactobacillus crispatus M206119 exacerbates murine DSS-colitis by interfering with inflammatory responses. World J Gastroenterol. 2012;18:2344–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ganz T, Weiss J. Antimicrobial peptides of phagocytes and epithelia. Semin Hematol. 1997;34:343–54.

    CAS  PubMed  Google Scholar 

  35. Pavlick KP, Laroux FS, Fuseler J, Wolf RE, Gray L, Hoffman J, et al. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med. 2002;33:311–22.

    Article  CAS  PubMed  Google Scholar 

  36. Roessner A, Kuester D, Malfertheiner P, Schneider-Stock R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract. 2008;204:511–24.

    Article  CAS  PubMed  Google Scholar 

  37. Keshavarzian A, Fusunyan RD, Jacyno M, Winship D, MacDermott RP, Sanderson IR. Increased interleukin-8 (IL-8) in rectal dialysate from patients with ulcerative colitis: evidence for a biological role for IL-8 in inflammation of the colon. Am J Gastroenterol. 1999;94:04–12.

    Google Scholar 

  38. Brownlee IA, Knight J, Dettmar PW, Pearson JP. Action of reactive oxygen species on colonic mucus secretions. Free Radic Biol Med. 2007;43:800–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A portion of this work was supported by a Grant-in-Aid for Scientific Research A (No. 21240050) and the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitronics of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity having a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript, apart from those disclosed. The authors declare that they have no conflicts of interest with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nagasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vong, L.B., Yoshitomi, T., Morikawa, K. et al. Oral nanotherapeutics: effect of redox nanoparticle on microflora in mice with dextran sodium sulfate-induced colitis. J Gastroenterol 49, 806–813 (2014). https://doi.org/10.1007/s00535-013-0836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0836-8

Keywords

Navigation