Skip to main content

Advertisement

Log in

Ursodeoxycholic acid stabilizes the bile salt export pump in the apical membrane in MDCK II cells

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Ursodeoxycholic acid (UDCA) partly exerts choleretic effects by modifying the function of the bile salt export pump (Bsep, ABCB11). UDCA induces insertion of Bsep into the canalicular membrane of hepatocytes; however, underlying mechanisms remain unknown. We aimed to elucidate molecular mechanisms behind UDCA-induced Bsep activation.

Methods

We established MDCK II cells stably expressing both Bsep and Na+-taurocholate cotransporting polypeptide, and investigated the effect of UDCA on activity and protein expression of Bsep using these cells. We performed inhibitor study to know the molecules involved in UDCA-induced Bsep activation, and also tested the influence of UDCA on Bsep having a disease-associated mutation.

Results

UDCA activated Bsep in a dose-dependent manner. UDCA did not affect Bsep protein expression in whole cell lysates but increased its apical surface expression by extending the half-life from 2.4 to 5.0 h. This effect was specific to Bsep because UDCA did not affect other apical and basolateral proteins, and was independent of protein kinase A, adenylate cyclase, p38MAPK, phosphatidylinositide 3-kinase, Ca2+, and microtubules. NorUDCA activated Bsep similar to UDCA; however, cholic acid, taurocholic acid, and tauroUDCA had no effect. UDCA significantly increased the activity of Bsep with a benign recurrent intrahepatic cholestasis 2 mutation (A570T) but did not affect Bsep with a progressive familial intrahepatic cholestasis 2 mutation (G982R or D482G).

Conclusions

We demonstrated that UDCA stabilizes Bsep protein in the apical membrane and increases its activity in MDCK II cells, presumably by retarding the endocytotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:318–28.

    Article  CAS  PubMed  Google Scholar 

  2. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res. 2008;38:123–31.

    CAS  PubMed  Google Scholar 

  3. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sanchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond). 2011;121:523–44.

    Article  CAS  Google Scholar 

  4. Fiorotto R, Spirli C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology. 2007;133:1603–13.

    Article  CAS  PubMed  Google Scholar 

  5. Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology. 1986;90:837–52.

    CAS  PubMed  Google Scholar 

  6. Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, et al. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology. 2001;121:170–83.

    Article  CAS  PubMed  Google Scholar 

  7. Marschall HU, Wagner M, Zollner G, Fickert P, Diczfalusy U, Gumhold J, et al. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology. 2005;129:476–85.

    Article  PubMed  Google Scholar 

  8. Kurz AK, Graf D, Schmitt M, Vom Dahl S, Haussinger D. Tauroursodeoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology. 2001;121:407–19.

    Article  CAS  PubMed  Google Scholar 

  9. Schliess F, Kurz AK, vom Dahl S, Haussinger D. Mitogen-activated protein kinases mediate the stimulation of bile acid secretion by tauroursodeoxycholate in rat liver. Gastroenterology. 1997;113:1306–14.

    Article  CAS  PubMed  Google Scholar 

  10. Mochizuki K, Kagawa T, Numari A, Harris MJ, Itoh J, Watanabe N, et al. Two N-linked glycans are required to maintain the transport activity of the bile salt export pump (ABCB11) in MDCK II cells. Am J Physiol Gastrointest Liver Physiol. 2007;292:G818–28.

    Article  CAS  PubMed  Google Scholar 

  11. Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, et al. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am J Physiol Gastrointest Liver Physiol. 2008;294:G58–67.

    Article  CAS  PubMed  Google Scholar 

  12. Lam P, Pearson CL, Soroka CJ, Xu S, Mennone A, Boyer JL. Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol. 2007;293:C1709–16.

    Article  CAS  PubMed  Google Scholar 

  13. Festi D, Montagnani M, Azzaroli F, Lodato F, Mazzella G, Roda A, et al. Clinical efficacy and effectiveness of ursodeoxycholic acid in cholestatic liver diseases. Curr Clin Pharmacol. 2007;2:155–77.

    Article  CAS  PubMed  Google Scholar 

  14. Stapelbroek JM, van Erpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol. 2010;52:258–71.

    Article  CAS  PubMed  Google Scholar 

  15. Sun AQ, Swaby I, Xu S, Suchy FJ. Cell-specific basolateral membrane sorting of the human liver Na(+)-dependent bile acid cotransporter. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1305–13.

    CAS  PubMed  Google Scholar 

  16. Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ. Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol. 1998;275:G1045–55.

    CAS  PubMed  Google Scholar 

  17. Hayashi H, Inamura K, Aida K, Naoi S, Horikawa R, Nagasaka H, et al. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology. 2012;55:1889–900.

    Article  CAS  PubMed  Google Scholar 

  18. Lam P, Xu S, Soroka CJ, Boyer JL. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis. Hepatology. 2012;55:1901–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hayashi H, Sugiyama Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol. 2009;75:143–50.

    Article  CAS  PubMed  Google Scholar 

  20. Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Haussinger D. Alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology. 2013;57:1117–29.

    Article  CAS  PubMed  Google Scholar 

  21. Haussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F. Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis. Gastroenterology. 2003;124:1476–87.

    Article  PubMed  Google Scholar 

  22. Kubitz R, Sutfels G, Kuhlkamp T, Kolling R, Haussinger D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology. 2004;126:541–53.

    Article  CAS  PubMed  Google Scholar 

  23. Wakabayashi Y, Lippincott-Schwartz J, Arias IM. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell. 2004;15:3485–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chardin P, McCormick F. Brefeldin A: the advantage of being uncompetitive. Cell. 1999;97:153–5.

    Article  CAS  PubMed  Google Scholar 

  25. Prydz K, Hansen SH, Sandvig K, van Deurs B. Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells. J Cell Biol. 1992;119:259–72.

    Article  CAS  PubMed  Google Scholar 

  26. Tuma PL, Nyasae LK, Backer JM, Hubbard AL. Vps34p differentially regulates endocytosis from the apical and basolateral domains in polarized hepatic cells. J Cell Biol. 2001;154:1197–208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Misra S, Ujhazy P, Varticovski L, Arias IM. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci USA. 1999;96:5814–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am J Physiol Gastrointest Liver Physiol. 2003;285:G316–24.

    CAS  PubMed  Google Scholar 

  29. Kagawa T, Varticovski L, Sai Y, Arias IM. Mechanism by which cAMP activates PI3-kinase and increases bile acid secretion in WIF-B9 cells. Am J Physiol Cell Physiol. 2002;283:C1655–66.

    Article  CAS  PubMed  Google Scholar 

  30. Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem. 2001;276:7218–24.

    Article  CAS  PubMed  Google Scholar 

  31. Kruglov EA, Gautam S, Guerra MT, Nathanson MH. Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology. 2011;54:1790–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J Biol Chem. 1998;273:26638–44.

    Article  CAS  PubMed  Google Scholar 

  33. Maeda K, Kambara M, Tian Y, Hofmann AF, Sugiyama Y. Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na(+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1 (OATP-C), and oatp1B3 (OATP8). Mol Pharm. 2006;3:70–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nie B, Park HM, Kazantzis M, Lin M, Henkin A, Ng S, et al. Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology. 2012;56:1300–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hofmann AF, Zakko SF, Lira M, Clerici C, Hagey LR, Lambert KK, et al. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology. 2005;42:1391–8.

    Article  CAS  PubMed  Google Scholar 

  36. Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T, Spirli C, et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology. 2009;49:1972–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lam CW, Cheung KM, Tsui MS, Yan MS, Lee CY, Tong SF. A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2. J Hepatol. 2006;44:240–2.

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi A, Hasegawa M, Sumazaki R, Suzuki M, Toki F, Suehiro T, et al. Gradual improvement of liver function after administration of ursodeoxycholic acid in an infant with a novel ABCB11 gene mutation with phenotypic continuum between BRIC2 and PFIC2. Eur J Gastroenterol Hepatol. 2007;19:942–6.

    Article  PubMed  Google Scholar 

  39. Davit-Spraul A, Fabre M, Branchereau S, Baussan C, Gonzales E, Stieger B, et al. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology. 2010;51:1645–55.

    Article  CAS  PubMed  Google Scholar 

  40. Lam P, Wang R, Ling V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry. 2005;44:12598–605.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Takashi Iida for providing norUDCA. This work was supported in part by a Grand-in-Aid for Scientific Research (C) (No. 22590746 to T.K.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatehiro Kagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, T., Orii, R., Hirose, S. et al. Ursodeoxycholic acid stabilizes the bile salt export pump in the apical membrane in MDCK II cells. J Gastroenterol 49, 890–899 (2014). https://doi.org/10.1007/s00535-013-0833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0833-y

Keywords

Navigation