Skip to main content

Advertisement

Log in

Genetic polymorphisms of OCT-1 confer susceptibility to severe progression of primary biliary cirrhosis in Japanese patients

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

To identify the genetic factors involved in the pathogenesis of primary biliary cirrhosis (PBC), we focused on the organic cation transporter 1 (OCT1/SLC22A1), which is closely associated with phosphatidylcholine synthesis in hepatocytes.

Methods

We selected four (rs683369, rs2282143, rs622342 and rs1443844) OCT-1 single nucleotide polymorphisms (SNPs), and genotyped these SNPs using the TaqMan probe method in 275 Japanese PBC patients and 194 gender-matched, healthy volunteers as controls.

Results

The Chi-square test revealed that the rs683369 variant allele (G) was associated with insusceptibility to PBC development [P = 0.009, odds ratio (OR) 0.60, 95 % confidence interval (CI) 0.40–0.88] in an allele model, and that the rs683369 variant allele (G) was associated with jaundice-type progression in a minor allele dominant genotype model (P = 0.032, OR 3.10, 95 % CI 1.05–9.14). The OCT-1 rs2282143 variant (T) and rs622342 variant (C) were also associated with jaundice-type progression in a minor allele recessive genotype model (P = 0.0002, OR 10.58, 95 % CI 2.36–47.54, and P = 0.006, OR 7.84, 95 % CI 1.39–44.36, respectively). Furthermore, the association of OCT-1 rs683369 and rs622342 with susceptibility to jaundice-type progression was confirmed by a replication study with a distinct set of PBC patients who underwent liver transplantation.

Conclusions

The present study is the first report on the association of OCT-1 genetic polymorphisms with the overall development and jaundice-type progression of PBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med. 2005;353:1261–73.

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura M, Kondo H, Mori T, et al. Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology. 2007;45:118–27.

    Article  CAS  PubMed  Google Scholar 

  3. Gershwin ME, Ansari AA, Mackay IR, et al. Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev. 2000;174:210–25.

    Article  CAS  PubMed  Google Scholar 

  4. Invernizzi P, Podda M, Battezzati PM, et al. Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis. J Hepatol. 2001;34:366–72.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura M, Shimizu-Yoshida Y, Takii Y, et al. Antibody titer to gp210-C terminal peptide as a clinical parameter for monitoring primary biliary cirrhosis. J Hepatol. 2005;42:386–92.

    Article  CAS  PubMed  Google Scholar 

  6. Wesierska-Gadek J, Penner E, Battezzati PM, et al. Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology. 2006;43:1135–44.

    Article  CAS  PubMed  Google Scholar 

  7. Worman HJ, Courvalin J-C. Antinuclear antibodies specific for primary biliary cirrhosis. Autoimmun Rev. 2003;2:211–7.

    Article  PubMed  Google Scholar 

  8. Poupon R. Primary biliary cirrhosis: a 2010 update. J Hepatol. 2010;52(5):745–58.

    Article  PubMed  Google Scholar 

  9. Corpechot C, Carrat F, Bahr A, et al. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology. 2005;128(2):297–303.

    Article  CAS  PubMed  Google Scholar 

  10. Selmi C, Invernizzi P, Zuin M, et al. Genes and (auto)immunity in primary biliary cirrhosis. Genes Immun. 2005;6:543–56.

    Article  CAS  PubMed  Google Scholar 

  11. Selmi C, Invernizzi P, Zuin M, et al. Genes and (auto) immunity in primary biliary cirrhosis. Genes Immun. 2005;6(7):543–56.

    Article  CAS  PubMed  Google Scholar 

  12. Brind AM, Bray GP, Portmann BC, et al. Prevalence and pattern of familial disease in primary biliary cirrhosis. Gut. 1995;36(4):615–7.

    Article  CAS  PubMed  Google Scholar 

  13. Aiba Y, Nakamura M, Joshita S, et al. Genetic polymorphisms in CTLA4 and SLC4A2 are differentially associated with the pathogenesis of primary biliary cirrhosis in Japanese patients. J Gastroenterol. 2011;46(10):1203–12.

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka A, Quaranta S, Mattalia A, et al. The tumor necrosis factor-alpha promoter correlates with progression of primary biliary cirrhosis. J Hepatol. 1999;30(5):826–9.

    Article  CAS  PubMed  Google Scholar 

  15. Selmi C, Zuin M, Biondi ML, et al. Genetic variants of endothelial nitric oxide synthase in patients with primary biliary cirrhosis: association with disease severity. J Gastroenterol Hepatol. 2003;18(10):1150–5.

    Article  CAS  PubMed  Google Scholar 

  16. Poupon R, Ping C, Chrétien Y, et al. Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J Hepatol. 2008;49(6):1038–45.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong B, Strnad P, Selmi C, et al. Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity. Hepatology. 2009;50(2):546–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kimura Y, Selmi C, Leung PS, et al. Genetic polymorphisms influencing xenobiotic metabolism and transport in patients with primary biliary cirrhosis. Hepatology. 2005;41(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  19. Juran BD, Atkinson EJ, Schlicht EM, et al. Primary biliary cirrhosis is associated with a genetic variant in the 3′ flanking region of the CTLA4 gene. Gastroenterology. 2008;135(4):1200–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Donaldson P, Agarwal K, Craggs A, et al. HLA and interleukin 1 gene polymorphisms in primary biliary cirrhosis: associations with disease progression and disease susceptibility. Gut. 2001;48(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  21. Inamine T, Nakamura M, Kawauchi A, et al. A polymorphism in the integrin αV subunit gene affects the progression of primary biliary cirrhosis in Japanese patients. J Gastroenterol. 2011;46(5):676–86.

    Article  CAS  PubMed  Google Scholar 

  22. Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2011;43(4):329–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med. 2009;360:2544–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hirschfield GM, Liu X, Han Y, et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet. 2010;42(8):655–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tanaka A, Invernizzi P, Ohira H, et al. Replicated association of 17q12-21 with susceptibility of primary biliary cirrhosis in a Japanese cohort. Tissue Antigens. 2011;78(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Invernizzi P, Lu Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet. 2010;42(8):658–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nakamura M, Nishida N, Kawashima M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91:721–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics. 2004;14:91–102.

    Article  CAS  PubMed  Google Scholar 

  29. de Vree JML, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998;95:282–7.

    Article  PubMed  Google Scholar 

  30. Jacquemin E, de Vree JML, Cresteil D, et al. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 2001;120:1448–58.

    Article  CAS  PubMed  Google Scholar 

  31. Ohishi Y, Nakamura M, Iio N, et al. Single-nucleotide polymorphism analysis of the multidrug resistance protein 3 gene for the detection of clinical progression in Japanese patients with primary biliary cirrhosis. Hepatology. 2008;48(3):853–62.

    Article  CAS  PubMed  Google Scholar 

  32. Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75:451–62.

    Article  CAS  PubMed  Google Scholar 

  33. Oude Elferink RP, Ottenhoff R, van Wijland M, et al. Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest. 1995;95:31–8.

    Google Scholar 

  34. Ali S, Zakim D. The effects of bilirubin on the thermal properties of phosphatidylcholine bilayers. Biophys J. 1993;65:101–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Eur J Physiol. 2007;453:601–10.

    Google Scholar 

  36. Michel V, Yuan Z, Ramsubir S, et al. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006;231(5):490–504.

    CAS  Google Scholar 

  37. Sinclair CJ, Chi KD, Subramanian V, et al. Functional expression of a high affinity mammalian hepatic choline/organic cation transporter. J Lipid Res. 2000;41(11):1841–8.

    CAS  PubMed  Google Scholar 

  38. Zeisel SH, Da Costa KA, Franklin PD, et al. Choline, an essential nutrient for humans. FASEB J. 1991;5(7):2093–8.

    CAS  PubMed  Google Scholar 

  39. Nies AT, Koepsell H, Winter S, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.

    Article  CAS  PubMed  Google Scholar 

  40. Becker ML, Visser LE, van Schaik RH, et al. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009;9(4):242–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lindor KD, Gershwin ME, Poupon R, et al. Primary biliary cirrhosis. Hepatology. 2009;50(1):291–308.

    Article  PubMed  Google Scholar 

  42. Scheuer PJ. Primary biliary cirrhosis. Proc R Soc Med. 1967;60:1257–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. van Helvoort A, Smith AJ, Sprong H, et al. MDR1 P-glycoprotein is a lipid translocase if broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996;87:507–17.

    Article  PubMed  Google Scholar 

  44. Jin HE, Hong SS, Choi MK, et al. Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynyl estradiol-induced cholestasis. Pharm Res. 2009;26(3):549–59.

    Article  CAS  PubMed  Google Scholar 

  45. Denk GU, Soroka CJ, Mennone A, et al. Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology. 2004;39(5):1382–9.

    Article  CAS  PubMed  Google Scholar 

  46. Becker ML, Visser LE, van Schaik RH, et al. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics. 2011;12(1):79–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62(1):1–96.

    Google Scholar 

  48. Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308(1):2–9.

    CAS  PubMed  Google Scholar 

  49. Sakata T, Anzai N, Shin HJ, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun. 2004;313(3):789–93.

    Article  CAS  PubMed  Google Scholar 

  50. Shu Y, Leabman MK, Feng B, et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci USA. 2003;100(10):5902–7.

    Article  CAS  PubMed  Google Scholar 

  51. Chen L, Takizawa M, Chen E, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther. 2010;335(1):42–50.

    CAS  PubMed  Google Scholar 

  52. Nakamura M, Yasunami M, Kondo H, et al. Analysis of HLA-DRB1 polymorphisms in Japanese patients with primary biliary cirrhosis (PBC): the HLA-DRB1 polymorphism determines the relative risk of antinuclear antibodies for disease progression in PBC. Hepatol Res. 2010;40:494–504.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (#20590800, #23591006) to Minoru Nakamura; by a Grant-in Aid for Clinical Research from the National Hospital Organization to Minoru Nakamura; and by the Research Program of Intractable Disease provided by the Ministry of Health, Labor, and Welfare of Japan to Hiromi Ishibashi. We thank Drs. Seigo Abiru, Shinya Nagaoka (NHO Nagasaki Medical Center), Hajime Ota (NHO Kanazawa Medical Center), Tatsuji Komatsu (NHO Yokohama Medical Center), Jinya Ishida (NHO Nishisaitama Hospital), Hirotsugu Kouno (NHO Kure Medical Center), Michiyasu Yagura (NHO Tokyo Hospital), Masakazu Kobayashi (NHO Matsumoto Medical Center), Toyokichi Muro (NHO Oita Medical Center), Naohiko Masaki (National Center for Global Health and Medicine), Keiichi Hirata (NHO National Disaster Medical Center), Yukio Watanabe (NHO Sagamihara Hospital), Masaaki Shimada (NHO Nagoya Medical Center), Toshiki Komeda (NHO Kyoto Medical Center), Kazuhiro Sugi (NHO Kumamoto Medical Center), Eiichi Takesaki (NHO Higashi-Hiroshima Medical Center), Yukio Ohara (NHO Hokkaido Medical Center), Hiroshi Mano (NHO Sendai Medical Center), Haruhiro Yamashita (NHO Okayama Medical Center), Michiaki Koga (NHO Ureshino Medical Center), Masahiko Takahashi (NHO Tokyo Medical Center), Tetsuo Yamamoto (NHO Yonago Medical Center), Fujio Makita (NHO Nishigunma Hospital), Hideo Nishimura (NHO Asahikawa Medical Center), Hitoshi Takagi (NHO Takasaki General Medical Center), Noboru Hirashima (NHO Higashinagoya Hospital), and Kaname Yoshizawa (NHO Shinshu Ueda Medical Center) for obtaining informed consent and collecting serum and DNA samples from PBC patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Minoru Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohishi, Y., Nakamuta, M., Ishikawa, N. et al. Genetic polymorphisms of OCT-1 confer susceptibility to severe progression of primary biliary cirrhosis in Japanese patients. J Gastroenterol 49, 332–342 (2014). https://doi.org/10.1007/s00535-013-0795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0795-0

Keywords

Navigation