Matsuo N, Ogawa S, Imai Y, et al. Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia/reoxygenation. J Biol Chem. 1995;270:28216–22.
Article
CAS
PubMed
Google Scholar
Beil B, Screaton G, Stamm S. Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing. DNA Cell Biol. 1997;16:679–90.
CAS
PubMed
Google Scholar
Tacke R, Tohyama M, Ogawa S, et al. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell. 1998;93:139–48.
Article
CAS
PubMed
Google Scholar
Hertel KJ, Maniatis T. The function of multisite splicing enhancers. Mol Cell. 1998;1:449–55.
Article
CAS
PubMed
Google Scholar
Qi J, Su S, McGuffin ME, et al. Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing. Nucleic Acids Res. 2006;34:6256–63.
Article
CAS
PubMed
Google Scholar
Nayler O, Cap C, Stamm S. Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics. 1998;53:191–202.
Article
CAS
PubMed
Google Scholar
Hofmann Y, Lorson CL, Stamm S, et al. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA. 2000;97:9618–23.
Article
CAS
PubMed
Google Scholar
Singh NN, Androphy EJ, Singh RN. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA. 2004;10:1291–305.
Article
CAS
PubMed
Google Scholar
Martins de Araujo M, Bonnal S, Hastings ML, et al. Differential 3′ splice site recognition of SMN1 and SMN2 transcripts by U2AF and U2 snRNP. RNA 2009;15:515–23.
Google Scholar
Jiang Z, Tang H, Havlioglu N, et al. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta. J Biol Chem. 2003;278:18997–9007.
Article
CAS
PubMed
Google Scholar
Kondo S, Yamamoto N, Murakami T, et al. Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Genes Cells. 2004;9:121–30.
Article
CAS
PubMed
Google Scholar
Watermann DO, Tang Y, Zur Hausen A, et al. Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res. 2006;66:4774–80.
Article
CAS
PubMed
Google Scholar
Tsukamoto Y, Matsuo N, Ozawa K, et al. Expression of a novel RNA-splicing factor, RA301/Tra2beta, in vascular lesions and its role in smooth muscle cell proliferation. Am J Pathol. 2001;158:1685–94.
Article
CAS
PubMed
Google Scholar
Kiryu-Seo S, Matsuo N, Wanaka A, et al. A sequence-specific splicing activator, tra2beta, is up-regulated in response to nerve injury. Brain Res Mol Brain Res. 1998;62:220–3.
Article
CAS
PubMed
Google Scholar
Gabriel B, Zur Hausen A, Bouda J, et al. Significance of nuclear hTra2-beta1 expression in cervical cancer. Acta Obstet Gynecol Scand. 2009;88:216–21.
Article
CAS
PubMed
Google Scholar
Fischer DC, Noack K, Runnebaum IB, et al. Expression of splicing factors in human ovarian cancer. Oncol Rep. 2004;11:1085–90.
CAS
PubMed
Google Scholar
Takeo K, Kawai T, Nishida K, et al. Oxidative stress-induced alternative splicing of transformer 2beta (SFRS10) and CD44 pre-mRNAs in gastric epithelial cells. Am J Physiol Cell Physiol. 2009;297:C330–8.
Article
CAS
PubMed
Google Scholar
Daoud R, Da Penha Berzaghi M, Siedler F, et al. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur J Neurosci. 1999;11:788–802.
Article
CAS
PubMed
Google Scholar
Nakayama T, Ito M, Ohtsuru A, et al. Expression of the ets-1 proto-oncogene in human colorectal carcinoma. Mod Pathol. 2001;14:415–22.
Article
CAS
PubMed
Google Scholar
Stoilov P, Daoud R, Nayler O, et al. Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Hum Mol Genet. 2004;13:509–24.
Article
CAS
PubMed
Google Scholar
Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.
Article
CAS
PubMed
Google Scholar
Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.
Article
CAS
PubMed
Google Scholar
Rockenstein EM, McConlogue L, Tan H, et al. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem. 1995;270:28257–67.
Article
CAS
PubMed
Google Scholar
Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med. 2011;17:720–5.
Article
CAS
PubMed
Google Scholar
Venables JP, Klinck R, Koh C, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 2009;16:670–6.
Article
CAS
PubMed
Google Scholar
Meira LB, Bugni JM, Green SL, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 2008;118:2516–25.
CAS
PubMed
Google Scholar
Ozaki M, Deshpande SS, Angkeow P, et al. Rac1 regulates stress-induced, redox-dependent heat shock factor activation. J Biol Chem. 2000;275:35377–83.
Article
CAS
PubMed
Google Scholar
Jacobs AT, Marnett LJ. Heat shock factor 1 attenuates 4-Hydroxynonenal-mediated apoptosis: critical role for heat shock protein 70 induction and stabilization of Bcl-XL. J Biol Chem. 2007;282:33412–20.
Article
CAS
PubMed
Google Scholar
Vilaboa NE, Galan A, Troyano A, et al. Regulation of multidrug resistance 1 (MDR1)/P-glycoprotein gene expression and activity by heat-shock transcription factor 1 (HSF1). J Biol Chem. 2000;275:24970–6.
Article
CAS
PubMed
Google Scholar
Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.
Article
CAS
PubMed
Google Scholar
Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;303:11–34.
Article
CAS
PubMed
Google Scholar
Hsu T, Trojanowska M, Watson DK. Ets proteins in biological control and cancer. J Cell Biochem. 2004;91:896–903.
Article
CAS
PubMed
Google Scholar
Singh AK, Swarnalatha M, Kumar V. c-ETS1 facilitates G1/S-phase transition by up-regulating cyclin E and CDK2 genes and cooperates with hepatitis B virus X protein for their deregulation. J Biol Chem. 2011;286:21961–70.
Article
CAS
PubMed
Google Scholar
Seth A, Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41:2462–78.
Article
CAS
PubMed
Google Scholar
Ito Y, Takeda T, Okada M, et al. Expression of ets-1 and ets-2 in colonic neoplasms. Anticancer Res. 2002;22:1581–4.
CAS
PubMed
Google Scholar
Foulds CE, Nelson ML, Blaszczak AG, et al. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol. 2004;24:10954–64.
Article
CAS
PubMed
Google Scholar
Wilson LA, Gemin A, Espiritu R, et al. ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB J. 2005;19:2085–7.
CAS
PubMed
Google Scholar
Venables JP, Bourgeois CF, Dalgliesh C, et al. Up-regulation of the ubiquitous alternative splicing factor Tra2beta causes inclusion of a germ cell-specific exon. Hum Mol Genet. 2005;14:2289–303.
Article
CAS
PubMed
Google Scholar
Rochat-Steiner V, Becker K, Micheau O, et al. FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med. 2000;192:1165–74.
Article
CAS
PubMed
Google Scholar
Novoyatleva T, Heinrich B, Tang Y, et al. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum Mol Genet. 2008;17:52–70.
Article
CAS
PubMed
Google Scholar
Benderska N, Becker K, Girault JA, et al. DARPP-32 binds to tra2-beta1 and influences alternative splicing. Biochim Biophys Acta. 2010;1799:448–53.
Article
CAS
PubMed
Google Scholar
Shi Y, Manley JL. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell. 2007;28:79–90.
Article
CAS
PubMed
Google Scholar