Skip to main content

Advertisement

Log in

Usefulness of endoscopic brushing and magnified endoscopy with narrow band imaging (ME-NBI) to detect intestinal phenotype in columnar-lined esophagus

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Barrett’s esophagus with specialized intestinal metaplasia (SIM), which is at high risk of progressing to esophageal adenocarcinoma, has been identified by obtaining biopsy specimens randomly. Magnified endoscopy with narrow band imaging (ME-NBI) is reported to be useful for detecting SIM or the intestinal phenotype. We aimed to evaluate the usefulness of endoscopic brushing followed by ME-NBI for the detection of the intestinal phenotype.

Methods

Biopsy and brushing samples were taken following endoscopic observation by ME-NBI. Total RNA was extracted from the whole sample and microdissected samples, and quantitative reverse transcription-polymerase chain reaction (PCR) analysis of SHH, CDX2, and mucin mRNA expression was performed.

Results

Fifty patients (32 men, 18 women, average age 67.3 years) with metaplastic columnar epithelium of the lower esophagus were studied. MUC2 (85 vs. 65 %) and CDX2 (95 vs. 75 %) were detected more frequently in the brushing samples than in the biopsy samples. MUC2 expression levels were significantly higher in the brushing samples than those in the biopsy samples. CDX2 and MUC2 expression levels in the brushing samples were significantly higher in the mucosa with tubular/villous pattern observed by ME-NBI than the levels in mucosae with other patterns.

Conclusions

Endoscopic brushing in mucosa of columnar epithelium with a tubular/villous pattern visualized by ME-NBI is useful to detect the intestinal phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reid BJ. Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am. 1991;20:817–34.

    PubMed  CAS  Google Scholar 

  2. Thompson JJ, Zinsser KR, Enterline HT. Barrett’s metaplasia and adenocarcinoma of the esophagus and gastroesophageal junction. Hum Pathol. 1983;14:42–61.

    Article  PubMed  CAS  Google Scholar 

  3. di Pietro M, Fitzgerald RC. Barrett’s oesophagus: an ideal model to study cancer genetics. Hum Genet. 2009;126:233–46.

    Article  PubMed  Google Scholar 

  4. Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103:788–97.

    Article  PubMed  Google Scholar 

  5. Sharma P. Recent advances in Barrett’s esophagus: short-segment Barrett’s esophagus and cardia intestinal metaplasia. Semin Gastrointest Dis. 1999;10:93–102.

    PubMed  CAS  Google Scholar 

  6. DeMeester SR, DeMeester TR. Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg. 2000;231:303–21.

    Article  PubMed  CAS  Google Scholar 

  7. Abrams JA, Kapel RC, Lindberg GM, Saboorian MH, Genta RM, Neugut AI, et al. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7:736–42 (quiz 710).

    Google Scholar 

  8. Macdonald PM, Struhl G. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature. 1986;324:537–45.

    Article  PubMed  CAS  Google Scholar 

  9. Moreno E, Morata G. Caudal is the Hox gene that specifies the most posterior Drosophile segment. Nature. 1999;400:873–7.

    Article  PubMed  CAS  Google Scholar 

  10. Phillips RW, Frierson HF Jr, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003;27:1442–7.

    Article  PubMed  Google Scholar 

  11. Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122:689–96.

    Article  PubMed  CAS  Google Scholar 

  12. Wallace MB, Perelman LT, Backman V, Crawford JM, Fitzmaurice M, Seiler M, et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology. 2000;119:677–82.

    Article  PubMed  CAS  Google Scholar 

  13. Panjehpour M, Overholt BF, Vo-Dinh T, Haggitt RC, Edwards DH, Buckley FP 3rd. Endoscopic fluorescence detection of high-grade dysplasia in Barrett’s esophagus. Gastroenterology. 1996;111:93–101.

    Article  PubMed  CAS  Google Scholar 

  14. Mayinger B, Horner P, Jordan M, Gerlach C, Horbach T, Hohenberger W, et al. Light-induced autofluorescence spectroscopy for the endoscopic detection of esophageal cancer. Gastrointest Endosc. 2001;54:195–201.

    Article  PubMed  CAS  Google Scholar 

  15. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology. 2001;120:7–12.

    Article  PubMed  CAS  Google Scholar 

  16. Kadowaki S, Tanaka K, Toyoda H, Kosaka R, Imoto I, Hamada Y, et al. Ease of early gastric cancer demarcation recognition: a comparison of four magnifying endoscopy methods. J Gastroenterol Hepatol. 2009;24:1625–30.

    Article  PubMed  Google Scholar 

  17. Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy. 2004;36:1080–4.

    Article  PubMed  CAS  Google Scholar 

  18. Uedo N, Ishihara R, Iishi H, Yamamoto S, Yamamoto S, Yamada T, et al. A new method of diagnosing gastric intestinal metaplasia: narrow-band imaging with magnifying endoscopy. Endoscopy. 2006;38:819–24.

    Article  PubMed  CAS  Google Scholar 

  19. Geisinger KR, Teot LA, Richter JE. A comparative cytopathologic and histologic study of atypia, dysplasia and adenocarcinoma in Barrett’s esophagus. Cancer. 1992;69:8–16.

    Article  PubMed  CAS  Google Scholar 

  20. Fusaroli P, Fedeli P, Manta R, et al. Histology vs. brush cytology (BC) in the diagnosis and follow up of Barrett’s esophagus (BE). Gastrointest Endosc. 2005;61:AB131.

    Article  Google Scholar 

  21. Hardwick RH, Morgan RJ, Barren BF, Lott M, Alderson D. Brush cytology in the diagnosis of neoplasia in Barrett’s esophagus. Dis Esophagus. 1997;10:233–7.

    PubMed  CAS  Google Scholar 

  22. Geboes K, Van Eyken P. The diagnosis of dysplasia and malignancy in Barrett’s oesophagus. Histopathology. 2000;37:99–107.

    Article  PubMed  CAS  Google Scholar 

  23. Krishnadath KK. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett’s esophagus. Curr Opin Gastroenterol. 2007;23:440–5.

    Article  PubMed  Google Scholar 

  24. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.

    Article  PubMed  CAS  Google Scholar 

  25. van den Brink GR, Hardwick JC, Tytgat GN, Brink MA, Ten Kate FJ, Van Deventer SJ, et al. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology. 2001;121:317–28.

    Article  PubMed  Google Scholar 

  26. van den Brink GR, Hardwick JC, Nielsen C, Xu C, ten Kate FJ, Glickman J, et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut. 2002;51:628–33.

    Article  PubMed  Google Scholar 

  27. Endo T, Awakawa T, Takahashi H, Arimura Y, Itoh F, Yamashita K, et al. Classification of Barrett’s epithelium by magnifying endoscopy. Gastrointest Endosc. 2002;55:641–7.

    Article  PubMed  Google Scholar 

  28. Goda K, Tajiri H, Ikegami M, Urashima M, Nakayoshi T, Kaise M. Usefulness of magnifying endoscopy with narrow band imaging for the detection of specialized intestinal metaplasia in columnar-lined esophagus and Barrett’s adenocarcinoma. Gastrointest Endosc. 2007;65:36–46.

    Article  PubMed  Google Scholar 

  29. Norimura D, Isomoto H, Nakayama T, Hayashi T, Suematsu T, Nakashima Y, et al. Magnifying endoscopic observation with narrow band imaging for specialized intestinal metaplasia in Barrett’s esophagus with special reference to light blue crests. Dig Endosc. 2010;22:101–6.

    Article  PubMed  Google Scholar 

  30. Sharma P, Bansal A, Mathur S, Wani S, Cherian R, McGregor D, et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc. 2006;64:167–75.

    Article  PubMed  Google Scholar 

  31. Silva FB, Dinis-Ribeiro M, Vieth M, Rabenstein T, Goda K, Kiesslich R, et al. Endoscopic assessment and grading of Barrett’s esophagus using magnification endoscopy and narrow-band imaging: accuracy and interobserver agreement of different classification systems (with videos). Gastrointest Endosc. 2011;73:7–14.

    Article  PubMed  Google Scholar 

  32. Lin X, Finkelstein SD, Zhu B, Ujevich BJ, Silverman JF. Loss of heterozygosities in Barrett esophagus, dysplasia, and adenocarcinoma detected by esophageal brushing cytology and gastroesophageal biopsy. Cancer. 2009;117:57–66.

    PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflict of interest and there were no funding sources for the study, including pharmaceutical and industry support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Murao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murao, T., Shiotani, A., Yamanaka, Y. et al. Usefulness of endoscopic brushing and magnified endoscopy with narrow band imaging (ME-NBI) to detect intestinal phenotype in columnar-lined esophagus. J Gastroenterol 47, 1108–1114 (2012). https://doi.org/10.1007/s00535-012-0589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0589-9

Keywords

Navigation