Skip to main content

Advertisement

Log in

Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

In 2003, we initiated a clinical trial to examine autologous bone marrow cell infusion (ABMi) therapy for cirrhotic patients and reported the clinical effect of the therapy. To analyze how splenectomy may potentiate the effects of bone marrow cell infusion on cirrhosis, we performed a mouse study and a clinical trial on patients with cirrhosis.

Methods

In mice, we analyzed the effect of splenectomy on bone marrow cell infusion in four experimental groups (group A, splenectomy + bone marrow cell infusion + CCl4; group B, sham operation + bone marrow cell infusion + CCl4; group C, splenectomy + CCl4; group D, sham operation + CCl4). In clinical, we compared the effect of splenectomy on ABMi therapy.

Results

We observed significantly increased average serum albumin levels and higher expression of green fluorescent protein (GFP), matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen in the livers of group A. We observed MMP9/GFP double-positive cells in the cirrhotic livers. A significant decrease in the liver fibrosis areas was observed in group A. Splenectomy enhanced the repopulation of bone marrow cells into the cirrhotic liver and improved the liver microenvironment via expression of MMP9 secreted from repopulating GFP-positive cells. Next, we performed a clinical trial to compare the effect of splenectomy on the efficacy of ABMi therapy. Cirrhotic patients who underwent splenectomy before ABMi therapy tended to have a greater improvement in liver function.

Conclusion

ABMi therapy with splenectomy may be an effective therapeutic modality for cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABMi :

Autologous bone marrow cell infusion

PBS:

Phosphate-buffered saline

Alb:

Albumin

PT-INR:

Prothrombin time international normalized ratio

P3P:

Pro-collagen-III peptide

HGF:

Hepatocyte growth factor

Plt:

Platelet count

CCl4 :

Carbon tetrachloride

GFP:

Green fluorescent protein

References

  1. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, et al. Liver from bone marrow in humans. Hepatology. 2000;32:11–6.

    Article  PubMed  CAS  Google Scholar 

  2. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, et al. Hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.

    Article  PubMed  CAS  Google Scholar 

  3. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, et al. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med. 2002;8:1011–7.

    Article  PubMed  CAS  Google Scholar 

  4. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35.

    Article  PubMed  Google Scholar 

  5. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45–6.

    Article  PubMed  Google Scholar 

  6. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668–73.

    Article  PubMed  CAS  Google Scholar 

  7. Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem (Tokyo). 2003;134:551–8.

    Article  CAS  Google Scholar 

  8. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. 2004;40:1304–11.

    Article  PubMed  Google Scholar 

  9. Terai S, Yamaoto N, Omori K, Sakaida I, Okita K. A new cell therapy using bone marrow cells to repair damaged liver. J Gastroenterol. 2002;37:162–3.

    PubMed  CAS  Google Scholar 

  10. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells. 2006;24:2292–8.

    Article  PubMed  CAS  Google Scholar 

  11. Saito T, Okumoto K, Haga H, Nishise Y, Ishii R, Sato C, et al. Potential therapeutic application of intravenous autologous bone marrow infusion in patients with alcoholic liver cirrhosis. Stem Cells Dev. 2011;20(9):1503–10.

    Google Scholar 

  12. Kim JK, Park YN, Kim JS, Park MS, Paik YH, Seok JY, et al. Autologous bone marrow infusion activates the progenitor cell compartment in patients with advanced liver cirrhosis. Cell Transplant. 2010. doi:10.3727/096368910X506863.

  13. Spigos DG, Jonasson O, Mozes M, Capek V. Partial splenic embolization in the treatment of hypersplenism. AJR Am J Roentgenol. 1979;132:777–82.

    PubMed  CAS  Google Scholar 

  14. Oh JW, Ahn SM, Kim KS, Choi JS, Lee WJ, Kim BR. The role of splenectomy in patients with hepatocellular carcinoma and secondary hypersplenism. Yonsei Med J. 2003;44:1053–8.

    PubMed  Google Scholar 

  15. Terai S, Sakaida I, Nishina H, Okita K. Lesson from the GFP/CCl4 model–translational research project: the development of cell therapy using autologous bone marrow cells in patients with liver cirrhosis. J Hepatobiliary Pancreat Surg. 2005;12:203–7.

    Article  PubMed  Google Scholar 

  16. Guo D, Fu T, Nelson JA, Superina RA, Soriano HE. Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride. Transplantation. 2002;73:1818–24.

    Article  PubMed  CAS  Google Scholar 

  17. Ohata S, Nawa M, Kasama T, Yamasaki T, Sawanobori K, Hata S, et al. Hematopoiesis-dependent expression of CD44 in murine hepatic progenitor cells. Biochem Biophys Res Commun. 2009;379(4):817–23.

    Article  PubMed  CAS  Google Scholar 

  18. Lee TS, Park KK, Kim KH, Chu YA, Jeon JP, Hwang M. Protective effect of bioactive ceramics on liver injury: regulation of pro-inflammatory cytokine expression. J Mater Sci Mater Med. 2009;20:295–9.

    Article  PubMed  CAS  Google Scholar 

  19. Christensen E, Schlichting P, Fauerholdt L, Gluud C, Andersen PK, Juhl E, et al. Prognostic value of Child-Turcotte criteria in medically treated cirrhosis. Hepatology. 1984;4:430–5.

    Article  PubMed  CAS  Google Scholar 

  20. Giannini E, Caglieris S, Ceppa P, Risso D, Lantieri PB, Testa R, et al. Serum pro-collagen III peptide levels are related to lobular necrosis in untreated patients with chronic hepatitis C. Eur J Gastroenterol Hepatol. 2001;13:137–41.

    Article  PubMed  CAS  Google Scholar 

  21. Tsubouchi H. Hepatocyte growth factor for liver disease. Hepatology. 1999;30:333–4.

    Article  PubMed  CAS  Google Scholar 

  22. Masuhara M, Yasunaga M, Tanigawa K, Tamura F, Yamashita S, Sakaida I, et al. Expression of hepatocyte growth factor, transforming growth factor alpha, and transforming growth factor beta 1 messenger RNA in various human liver diseases and correlation with hepatocyte proliferation. Hepatology. 1996;24:323–9.

    PubMed  CAS  Google Scholar 

  23. Pontremoli S, Arrigo L. Effects of splenectomy on regeneration of the liver after partial hepatectomy. Boll Soc Ital Biol Sper. 1950;26:355–7.

    PubMed  CAS  Google Scholar 

  24. Schanz U, Gmur J. Rapid and automated processing of bone marrow grafts without Ficoll density gradient for transplantation of cryopreserved autologous or ABO-incompatible allogeneic bone marrow. Bone Marrow Transplant. 1992;10:507–13.

    PubMed  CAS  Google Scholar 

  25. Marubashi S, Dono K, Miyamoto A, Takeda Y, Nagano H, Umeshita K, et al. Impact of graft size on postoperative thrombocytopenia in living donor liver transplant. Arch Surg. 2007;142:1054–8.

    Article  PubMed  Google Scholar 

  26. Thomas ED, Storb R. Technique for human marrow grafting. Blood. 1970;36:507–15.

    PubMed  CAS  Google Scholar 

  27. Masetti M, Siniscalchi A, De Pietri L, Braglia V, Benedetto F, Di Cautero N, et al. Living donor liver transplantation with left liver graft. Am J Transplant. 2004;4:1713–6.

    Article  PubMed  Google Scholar 

  28. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGF beta1 in initiating hepaticstellate cell activation in vivo. J Hepatol. 1999;30:77–87.

    Article  PubMed  CAS  Google Scholar 

  29. Akahoshi T, Hashizume M, Tanoue K, Shimabukuro R, Gotoh N, Tomikawa M, et al. Role of the spleen in liver fibrosis in rats may be mediated by transforming growth factor beta-1. J Gastroenterol Hepatol. 2002;17:59–65.

    Article  PubMed  CAS  Google Scholar 

  30. Murata K, Shiraki K, Sugimoto K, Takase K, Nakano T, Furusaka A, et al. Splenectomy enhances liver regeneration through tumor necrosis factor (TNF)-alpha following dimethylnitrosamine-induced cirrhotic rat model. Hepatogastroenterology. 2001;48:1022–7.

    PubMed  CAS  Google Scholar 

  31. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto N, Terai S, Ohata S, Watanabe T, Omori K, Shinoda K, et al. A subpopulation of bone marrow cells depleted by a novel antibody, anti-Liv8, is useful for cell therapy to repair damaged liver. Biochem Biophys Res Commun. 2004;313:1110–8.

    Article  PubMed  CAS  Google Scholar 

  33. Dalakas E, Newsome PN, Harrison DJ, Plevris JN. Hematopoietic stem cell trafficking in liver injury. Faseb J. 2005;19:1225–31.

    Article  PubMed  CAS  Google Scholar 

  34. Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology. 2008;135:438–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for scientific research from the Japan Society for the Promotion of Science, Ministry of Health, Labour and Welfare, and Japan Science and Technology agency. We also wish to thank Mrs. Shoko Watanabe for help for FACS analysis.

Conflict of interest

All authors declare that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Terai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, T., Terai, S., Mizunaga, Y. et al. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol 47, 300–312 (2012). https://doi.org/10.1007/s00535-011-0486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0486-7

Keywords

Navigation