Skip to main content

Advertisement

Log in

Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer

  • Original Article-Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Dbait molecules are a new class of DNA repair inhibitors triggering false DNA damage signaling in cancer cells. Dbait has already been shown to be effective in combination with radiotherapy. The aim of this study was to assess the adjuvant impact of Dbait on chemotherapy in vitro and in mouse models of colorectal cancer.

Methods

We assessed DNA repair efficiency over time, in vitro, in human colon adenocarcinoma HT-29 (wild-type KRAS) and HCT-116 (mutated KRAS) cell lines treated with Dbait in combination with 5-fluorouracil and/or camptothecin. Genetically engineered mice spontaneously developing colorectal tumors in the intestines were selected for the evaluation of treatment efficacy.

Results

Dbait delayed the repair of DNA damage induced by chemotherapy in vitro. In APC +/1638N mutant mice, the combination of Dbait and chemotherapy decreased tumor size more effectively than chemotherapy alone (median size: 3.6 vs. 10.85 mm2, P < 0.05). In APC +/1638N/KRAS V12G mutant mice, animals treated with a combination of Dbait and chemotherapy survived significantly longer than animals treated by chemotherapy alone (median survival: 210 vs. 194 days, P < 0.05). A quarter of all the animals treated by chemotherapy alone died as rapidly as untreated animals, whereas the first death was delayed by 29 days by the addition of Dbait. No increase in toxicity due to Dbait was observed in either mouse model.

Conclusions

The use of Dbait to inhibit DNA repair may be an effective additional treatment for increasing the efficacy of chemotherapy in colon or rectal cancer, independently of KRAS status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pasetto LM, D’Andrea MR, Jirillo A, Rossi E, Monfardini S. Stable disease in advanced colorectal cancer: therapeutic implications. Anticancer Res. 2006;26:511–22.

    PubMed  Google Scholar 

  2. Augestad KM, Lindsetmo RO, Stulberg J, Reynolds H, Senagore A, Champagne B, et al. International preoperative rectal cancer management: staging, neoadjuvant treatment, and impact of multidisciplinary teams. World J Surg. 2010;34:2689–700.

    Article  PubMed  Google Scholar 

  3. Tamburini E, Tassinari D, Papi M, Nicoletti S, Fantini M, Ravaioli A. Preoperative chemotherapy in locally advanced rectal cancer: systematic review of literature. Recenti Prog Med. 2008;99:134–40.

    PubMed  Google Scholar 

  4. Ceelen W, Pattyn P, Boterberg T, Peeters M. Pre-operative combined modality therapy in the management of locally advanced rectal cancer. Eur J Surg Oncol. 2006;32:259–68.

    Article  PubMed  CAS  Google Scholar 

  5. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355:1041–7.

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23–30.

    Article  PubMed  CAS  Google Scholar 

  7. Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  PubMed  CAS  Google Scholar 

  8. Pieterse AH, Stiggelbout AM, Baas-Thijssen MC, van de Velde CJ, Marijnen CA. Benefit from preoperative radiotherapy in rectal cancer treatment: disease-free patients’ and oncologists’ preferences. Br J Cancer. 2007;97:717–24.

    Article  PubMed  CAS  Google Scholar 

  9. Dutreix M, Cosset JM, Sun JS. Molecular therapy in support to radiotherapy. Mutat Res. 2010;704:182–9.

    Article  PubMed  CAS  Google Scholar 

  10. Allal AS, Kahne T, Reverdin AK, Lippert H, Schlegel W, Reymond MA. Radioresistance-related proteins in rectal cancer. Proteomics. 2004;4:2261–9.

    Article  PubMed  CAS  Google Scholar 

  11. Collis SJ, DeWeese TL, Jeggo PA, Parker AR. The life and death of DNA-PK. Oncogene. 2005;24:949–61.

    Article  PubMed  CAS  Google Scholar 

  12. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64:2390–6.

    Article  PubMed  CAS  Google Scholar 

  13. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9:662–9.

    Article  PubMed  Google Scholar 

  14. Quanz M, Berthault N, Roulin C, Roy M, Herbette A, Agrario C, et al. Small-molecule drugs mimicking DNA damage: a new strategy for sensitizing tumors to radiotherapy. Clin Cancer Res. 2009;15:1308–16.

    Article  PubMed  CAS  Google Scholar 

  15. Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M. Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PLoS One. 2009;4:e6298.

    Article  PubMed  Google Scholar 

  16. Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989;49:5077–82.

    PubMed  CAS  Google Scholar 

  17. Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996;273:1109–11.

    Article  PubMed  CAS  Google Scholar 

  18. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology. 2006;131:1096–109.

    Article  PubMed  CAS  Google Scholar 

  19. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA. 1994;91:8969–73.

    Article  PubMed  CAS  Google Scholar 

  20. Janssen KP, el-Marjou F, Pinto D, Sastre X, Rouillard D, Fouquet C, et al. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology. 2002;123:492–504.

    Article  PubMed  CAS  Google Scholar 

  21. Smits R, van Oordt W, Luz A, Zurcher C, Jagmohan-Changur S, Breukel C, et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology. 1998;114:275–83.

    Article  PubMed  CAS  Google Scholar 

  22. Smith AJ, Stern HS, Penner M, Hay K, Mitri A, Bapat BV, et al. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res. 1994;54:5527–30.

    PubMed  CAS  Google Scholar 

  23. Duez P, Dehon G, Kumps A, Dubois J. Statistics of the Comet assay: a key to discriminate between genotoxic effects. Mutagenesis. 2003;18:159–66.

    Article  PubMed  CAS  Google Scholar 

  24. Kunz C, Focke F, Saito Y, Schuermann D, Lettieri T, Selfridge J, et al. Base excision by thymine DNA glycosylase mediates DNA-directed cytotoxicity of 5-fluorouracil. PLoS Biol. 2009;7:e91.

    Article  PubMed  Google Scholar 

  25. Curtin NJ. PARP inhibitors for cancer therapy. Expert Rev Mol Med. 2005;7:1–20.

    Article  PubMed  Google Scholar 

  26. Di Paola R, Mazzon E, Xu W, Genovese T, Ferrraris D, Muia C, et al. Treatment with PARP-1 inhibitors, GPI 15427 or GPI 16539, ameliorates intestinal damage in rat models of colitis and shock. Eur J Pharmacol. 2005;527:163–71.

    Article  PubMed  CAS  Google Scholar 

  27. De Soto JA, Wang X, Tominaga Y, Wang RH, Cao L, Qiao W, et al. The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci. 2006;2:179–85.

    Article  PubMed  Google Scholar 

  28. Sarkaria JN. Identifying inhibitors of ATM and ATR kinase activities. Methods Mol Med. 2003;85:49–56.

    PubMed  CAS  Google Scholar 

  29. Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E, et al. DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res. 2005;65:4987–92.

    Article  PubMed  CAS  Google Scholar 

  30. He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099–101.

    Article  PubMed  CAS  Google Scholar 

  31. Li GC, He F, Shao X, Urano M, Shen L, Kim D, et al. Adenovirus-mediated heat-activated antisense Ku70 expression radiosensitizes tumor cells in vitro and in vivo. Cancer Res. 2003;63:3268–74.

    PubMed  CAS  Google Scholar 

  32. Brueckner B, Kuck D, Lyko F. DNA methyltransferase inhibitors for cancer therapy. Cancer J. 2007;13:17–22.

    Article  PubMed  CAS  Google Scholar 

  33. Kashishian A, Douangpanya H, Clark D, Schlachter ST, Eary CT, Schiro JG, et al. DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer. Mol Cancer Ther. 2003;2:1257–64.

    PubMed  CAS  Google Scholar 

  34. Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL, Bedford JS. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation. Cancer Res. 2002;62:6400–4.

    PubMed  CAS  Google Scholar 

  35. Collis SJ, Swartz MJ, Nelson WG, DeWeese TL. Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res. 2003;63:1550–4.

    PubMed  CAS  Google Scholar 

  36. Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA. Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone. Cancer Res. 2007;67:6936–45.

    Article  PubMed  CAS  Google Scholar 

  37. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–7.

    Article  PubMed  CAS  Google Scholar 

  38. Woo T, Okudela K, Yazawa T, Wada N, Ogawa N, Ishiwa N, et al. Prognostic value of KRAS mutations and Ki-67 expression in stage I lung adenocarcinomas. Lung Cancer. 2009;65:355–62.

    Article  PubMed  Google Scholar 

  39. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  CAS  Google Scholar 

  40. Bernhard EJ, Stanbridge EJ, Gupta S, Gupta AK, Soto D, Bakanauskas VJ, et al. Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines. Cancer Res. 2000;60:6597–600.

    PubMed  CAS  Google Scholar 

  41. Toulany M, Dittmann K, Baumann M, Rodemann HP. Radiosensitization of Ras-mutated human tumor cells in vitro by the specific EGF receptor antagonist BIBX1382BS. Radiother Oncol. 2005;74:117–29.

    Article  PubMed  CAS  Google Scholar 

  42. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S, et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res. 2009;69:4252–9.

    Article  PubMed  CAS  Google Scholar 

  43. Tsunoda T, Takashima Y, Fujimoto T, Koyanagi M, Yoshida Y, Doi K, et al. Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia. 2010;12:397–404.

    PubMed  CAS  Google Scholar 

  44. Arias-Lopez C, Lazaro-Trueba I, Kerr P, Lord CJ, Dexter T, Iravani M, et al. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep. 2006;7:219–24.

    Article  PubMed  CAS  Google Scholar 

  45. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 2003;22:5784–91.

    Article  PubMed  CAS  Google Scholar 

  46. Bolderson E, Tomimatsu N, Richard DJ, Boucher D, Kumar R, Pandita TK, et al. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res. 2010;38:1821–31.

    Article  PubMed  CAS  Google Scholar 

  47. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–31.

    Article  PubMed  CAS  Google Scholar 

  48. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  PubMed  CAS  Google Scholar 

  49. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 1987;327:298–303.

    Article  PubMed  CAS  Google Scholar 

  50. Jansman FG, Sleijfer DT, de Graaf JC, Coenen JL, Brouwers JR. Management of chemotherapy-induced adverse effects in the treatment of colorectal cancer. Drug Saf. 2001;24:353–67.

    Article  PubMed  CAS  Google Scholar 

  51. Spiliotis JD. Peritoneal carcinomatosis cytoreductive surgery and HIPEC: a ray of hope for cure. Hepatogastroenterology. 2010;57:1173–7.

    PubMed  Google Scholar 

  52. Rodel C, Sauer R. Integration of novel agents into combined-modality treatment for rectal cancer patients. Strahlenther Onkol. 2007;183:227–35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the imaging platforms and animal facilities at Institut Curie. Animal treatments were performed with the technical assistance of Fréderic Bertrand. The magnetic resonance imaging analyses were performed by Andreas Volk and Carole Thomas (Institut Curie). We would like to thank Professor Bernard Asselain (Institut Curie) for statistical advice. We also thank Professor Daniel Louvard (Institut Curie) for his continual support during this project. This study was partly funded by DNA Therapeutics; A Herbette: employee of DNA Therapeutics; M Dutreix, S Robine, and JS Sun: cofounders of DNA Therapeutics, the company holding the patent for Dbait. This work was supported by Institut Curie, the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Muséum National d’Histoire Naturelle, and the CEE (STREP 28892-Bioemergence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Dutreix.

Additional information

F. Devun and G. Bousquet contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devun, F., Bousquet, G., Biau, J. et al. Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer. J Gastroenterol 47, 266–275 (2012). https://doi.org/10.1007/s00535-011-0483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0483-x

Keywords

Navigation