Skip to main content

Advertisement

Log in

Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Diminished intestinal epithelial barrier function contributes to the pathogenesis of Crohn’s disease. Clinical and experimental studies propose that increased tumor necrosis factor (TNF)-α promotes barrier dysfunction. The aim of this study was to investigate the effects of nutritional and other therapies upon intestinal barrier function in the presence of TNF-α in an in vitro model.

Methods

Caco-2 monolayers were grown to confluence on membrane supports and then exposed to TNF-α in the presence of polymeric formula, hydrocortisone or infliximab. Monolayer permeability was evaluated by measuring epithelial resistance, short-circuit current and horseradish peroxidase flux in an Ussing chamber. Tight junction and myosin II regulatory light-chain kinase gene expression was analysed by real-time PCR, with protein expression and localization analysed by Western blot and immunofluorescence.

Results

TNF-α increased monolayer permeability and diminished tight junction integrity. However both polymeric formula and infliximab completely abrogated the effects of TNF-α. These monolayers displayed unchanged permeability and tight junction integrity compared to untreated cells (media-no-TNF-α controls). In contrast, hydrocortisone only partially abrogated the effects of TNF-α, with these monolayers having increased permeability and altered tight junction integrity compared to media-no-TNF-α controls.

Conclusions

Both polymeric formula and infliximab completely prevent epithelial barrier dysfunction in the presence of TNF-α, whereas hydrocortisone partially prevents barrier dysfunction. These results provide evidence that superior mucosal healing can be achieved with both polymeric formula and infliximab compared to hydrocortisone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130:55–70.

    Article  PubMed  Google Scholar 

  2. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72.

    Article  PubMed  CAS  Google Scholar 

  3. Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol. 2009;9:715–20.

    Article  PubMed  CAS  Google Scholar 

  4. Day AS, Whitten KE, Sidler M, Lemberg DA. Systematic review: nutritional therapy in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2008;27:293–307.

    Article  PubMed  CAS  Google Scholar 

  5. de Ridder L, Rings EHHM, Damen GM, Kneepkens CMF, Schweizer JJ, Kokke FTM, et al. Infliximab dependency in pediatric Crohn’s disease: long-term follow-up of an unselected cohort. Inflamm Bowel Dis. 2008;14:353–8.

    Article  PubMed  Google Scholar 

  6. Yee AM, Pochapin MB. Treatment of complicated sarcoidosis with infliximab anti-tumor necrosis factor-alpha therapy. Ann Intern Med. 2001;135:27–31.

    PubMed  CAS  Google Scholar 

  7. Escher JC, Taminiau JAJM, Nieuwenhuis EES, Buller HA, Grand RJ. Treatment of inflammatory bowel disease in childhood: best available evidence. Inflamm Bowel Dis. 2003;9:34–58.

    Article  PubMed  Google Scholar 

  8. Rosh JR, Gross T, Mamula P, Griffiths A, Hyams J. Hepatosplenic T-cell lymphoma in adolescents and young adults with Crohn’s disease: a cautionary tale? Inflamm Bowel Dis. 2007;13:1024–30.

    Article  PubMed  Google Scholar 

  9. Borrelli O, Cordischi L, Cirulli M, Paganelli M, Labalestra V, Uccini S, et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: a randomized controlled open-label trial. Clin Gastroenterol Hepatol. 2006;4:744–53.

    Article  PubMed  Google Scholar 

  10. Day AS, Whitten KE, de Jong NSH. Nutrition and nutritional management of Crohn’s disease in children and adolescents. Curr Nutr Food Sci. 2006;2:3–14.

    Article  CAS  Google Scholar 

  11. Berni Canani R, Terrin G, Borrelli O, Romano MT, Manguso F, Coruzzo A, et al. Short- and long-term therapeutic efficacy of nutritional therapy and corticosteroids in paediatric Crohn’s disease. Dig Liver Dis. 2006;38:381–7.

    Article  PubMed  CAS  Google Scholar 

  12. Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, et al. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2000;14:281–9.

    Article  PubMed  CAS  Google Scholar 

  13. Forster C, Burek M, Romero IA, Weksler B, Couraud PO, Drenckhahn D. Differential effects of hydrocortisone and TNF-alpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol. 2008;586:1937–49.

    Google Scholar 

  14. Baldassano R, Braegger CP, Escher JC, Dewoody K, Hendricks DF, Keenan GF, et al. Infliximab (REMICADE) therapy in the treatment of pediatric Crohn’s disease. Am J Gastroenterol. 2003;98:833–8.

    Article  PubMed  CAS  Google Scholar 

  15. de Jong NSH, Leach ST, Day AS. Polymeric formula has direct anti-inflammatory effects on enterocytes in an in vitro model of intestinal inflammation. Dig Dis Sci. 2007;52:2029–36.

    Article  PubMed  CAS  Google Scholar 

  16. Gaillard JL, Finlay BB. Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun. 1996;64:1299–308.

    Google Scholar 

  17. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166:409–19.

    Article  PubMed  CAS  Google Scholar 

  18. Feighery LM, Cochrane SW, Quinn T, Baird AW, O’Toole D, Owens SE, et al. Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res. 2008;25:1377–86.

    Article  PubMed  CAS  Google Scholar 

  19. Wroblewski LE, Shen L, Ogden S, Romero-Gallo J, Lapierre LA, Israel DA, et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology. 2009;136:236–46.

    Article  PubMed  CAS  Google Scholar 

  20. Fries W, Muja C, Crisafulli C, Cuzzocrea S, Mazzon E. Dynamics of enterocyte tight junctions: effect of experimental colitis and two different anti-TNF strategies. Am J Physiol Gastrointest Liver Physiol. 2008;294:G938–47.

    Article  PubMed  CAS  Google Scholar 

  21. Stevenson BR, Anderson JM, Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem. 1988;83:129–45.

    Article  PubMed  CAS  Google Scholar 

  22. Gibson PR. Increased gut permeability in Crohn’s disease: is TNF the link? Gut. 2004;53:1724–5.

    Article  PubMed  CAS  Google Scholar 

  23. Schulzke J-D, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M. Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci. 2006;1072:288–99.

    Article  PubMed  CAS  Google Scholar 

  24. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, et al. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment. Gut. 2004;53:1295–302.

    Article  PubMed  CAS  Google Scholar 

  25. Watson AJ, Chu S, Sieck L, Gerasimenko O, Bullen T, Campbell F, et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology. 2005;129:902–12.

    Article  PubMed  Google Scholar 

  26. Florian P, Schoneberg T, Schulzke JD, Fromm M, Gitter AH. Single-cell epithelial defects close rapidly by an actinomyosin purse string mechanism with functional tight junctions. J Physiol. 2002;545:485–99.

    Article  PubMed  CAS  Google Scholar 

  27. Graham WV, Wang F, Clayburgh DR, Cheng JX, Yoon B, Wang Y, et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem. 2006;281:26205–15.

    Article  PubMed  CAS  Google Scholar 

  28. Al-Sadi R, Ye D, Dokladny K, Ma TY. Mechanism of Il-1β-induced increase in intestinal epithelial tight junction permeability. J Immunol. 2008;180:5653–61.

    PubMed  CAS  Google Scholar 

  29. Clayburgh DR, Rosen S, Witkowski ED, Wang F, Blair S, Dudek S, et al. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem. 2004;279:55506–13.

    Article  PubMed  CAS  Google Scholar 

  30. Weber CR, Turner JR. Inflammatory bowel disease: is it really just another break in the wall? Gut. 2007;56:6–8.

  31. Ma TY, Tran D, Hoa N, Nguyen D, Merryfield M, Tarnawski A. Mechanism of extracellular calcium regulation of intestinal epithelial tight junction permeability: role of cytoskeletal involvement. Microsc Res Tech. 2000;51:156–68.

    Article  PubMed  CAS  Google Scholar 

  32. Vieira AT, Pinho V, Lepsch LB, Scavone C, Ribeiro IM, Tomassini T, et al. Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury. Br J Pharmacol. 2005;146:244–51.

    Article  PubMed  CAS  Google Scholar 

  33. Cury DHB, Costa JE, Irika K, Mijji L, Garcez A, Buchiguel C, et al. Protective effect of octreotide and infliximab in an experimental model of indomethacin-induced inflammatory bowel disease. Dig Dis Sci. 2008;53:2516–20.

    Article  PubMed  CAS  Google Scholar 

  34. Zhong Y, Cai D, Cai W, Geng S, Chen L, Han T. Protective effect of galactooligosaccharide-supplemented enteral nutrition on intestinal barrier function in rats with severe acute pancreatitis. Clin Nutr. 2009;28:575–80.

    Article  PubMed  CAS  Google Scholar 

  35. Halász J, Holczbauer A, Páska C, Kovács M, Benyó G, Verebély T, et al. Claudin-1 and claudin-2 differentiate fetal and embryonal components in human hepatoblastoma. Hum Pathol. 2006;37:555–61.

    Article  PubMed  Google Scholar 

  36. Orbán E, Szabó E, Lotz G, Kupcsulik P, Páska C, et al. Different expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res. 2008;14:299–306.

    Article  PubMed  Google Scholar 

  37. Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 2005;288:G422–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the National Health and Medical Research Council, Australia (NHMRC, grant number 510230). Laboratory investigations were accomplished in the Westfield Research Laboratories. Osmolite was provided by Abbott Nutrition Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Leach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahidi, L., Day, A.S., Lemberg, D.A. et al. Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model. J Gastroenterol 47, 107–117 (2012). https://doi.org/10.1007/s00535-011-0471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0471-1

Keywords

Navigation