Skip to main content

Advertisement

Log in

CITED2 is activated in ulcerative colitis and induces p53-dependent apoptosis in response to butyric acid

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

In ulcerative colitis (UC), Fusobacterium varium is significantly detected in patients’ mucosa, and butyric acid (BA), abundantly produced by the bacterium, activates the p53 system and induces epithelial apoptosis, as we previously reported. However, factors active in the link between BA and p53 have yet to be clarified. Here, we identified a gene activated by BA specifically in UC-associated cancer cell lines and ascertained the mechanism of its activation of p53.

Methods

cDNA microarray analysis based on the Percellome (per cell normalization) method was performed on BA-stimulated UC-associated cancers and sporadic colorectal cancer cell lines under conditions mimicking colonic epithelium UC. For validation of microarray results, molecular, biochemical, and histopathological analyses were performed.

Results

We found the CBP/p300-interacting transactivator with glutamic acid/asparagine-rich carboxy-terminal domain 2 (CITED2) to be specifically upregulated in UC-associated cancer cell lines by BA treatment, at both mRNA and protein expression levels. CITED2 could be shown to induce p53 acetylation and p53-dependent apoptosis, accompanied by binding of CBP/p300. BA-dependent apoptosis was suppressed by an inhibitor of monocarboxylate transporter-1 and an siRNA for p53. In inflammatory foci of UC, histologically evident inflammatory activity and CITED2 expression were significantly correlated.

Conclusions

CITED2 was identified as UC-associated protein by cDNA microarray based on the Percellome method under UC-mimicking conditions in vitro. CITED2 activation may induce mucosal apoptosis and erosion by activating p53 and thus play a critical role in linking enteric bacteria with mucosal inflammation in UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

Butyric acid

CITED2:

CBP/p300-interacting transactivator with glutamic acid/asparagine-rich carboxy-terminal domain 2

4CHC:

4-Hydroxycinnamate

IL-10:

Interleukin-10

MCT1:

Monocarboxylate transporter-1

q-RT-PCR:

Quantitative reverse transcription PCR

sCRC:

Sporadic colorectal cancer

UC:

Ulcerative colitis

UCCA:

Ulcerative colitis-associated cancer

References

  1. Arai N, Mitomi H, Ohtani Y, Igarashi M, Kakita A, Okayasu I. Enhanced epithelial cell turnover associated with p53 accumulation and high p21WAF1/CIP1 expression in ulcerative colitis. Mod Pathol. 1999;12:604–11.

    PubMed  CAS  Google Scholar 

  2. Mitsuhashi J, Mikami T, Saigenji K, Okayasu I. Significant correlation of morphological remodeling in ulcerative colitis with disease duration and between elevated p53 and p21 expression in rectal mucosa and neoplastic development. Pathol Int. 2005;55:113–21.

    Article  PubMed  Google Scholar 

  3. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  4. Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut. 1996;39:87–92.

    Article  PubMed  CAS  Google Scholar 

  5. Okayasu I, Yamada M, Mikami T, Yoshida T, Kanno J, Ohkusa T. Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J Gastroenterol Hepatol. 2002;17:1078–83.

    Article  PubMed  Google Scholar 

  6. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  PubMed  CAS  Google Scholar 

  7. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31.

    PubMed  CAS  Google Scholar 

  8. Shkoda A, Ruiz PA, Daniel H, Kim SC, Rogler G, Sartor RB, et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology. 2007;132:190–207.

    Article  PubMed  CAS  Google Scholar 

  9. Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol. 2002;17:849–53.

    Article  PubMed  Google Scholar 

  10. Ohkusa T, Yoshida T, Sato N, Watanabe S, Tajiri H, Okayasu I. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol. 2009;58:535–45.

    Article  PubMed  CAS  Google Scholar 

  11. Ohkusa T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida T, Haga S, Numata Y, Yamashita K, Mikami T, Ogawa T, et al. Disruption of the p53–p53r2 DNA repair system in ulcerative colitis contributes to colon tumorigenesis. Int J Cancer. 2006;118:1395–403.

    Article  PubMed  CAS  Google Scholar 

  13. Ohkusa T, Nomura T, Terai T, Miwa H, Kobayashi O, Hojo M, et al. Effectiveness of antibiotic combination therapy in patients with active ulcerative colitis: a randomized, controlled pilot trial with long-term follow-up. Scand J Gastroenterol. 2005;40:1334–42.

    Article  PubMed  CAS  Google Scholar 

  14. Nomura T, Ohkusa T, Okayasu I, Yoshida T, Sakamoto M, Hayashi H, et al. Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy. Aliment Pharmacol Ther. 2005;21:1017–27.

    Article  PubMed  CAS  Google Scholar 

  15. Ohkusa T, Kato K, Terao S, Chiba T, Mabe K, Murakami K, et al. Newly developed antibiotic combination therapy for ulcerative colitis: a double-blind placebo-controlled multicenter trial. Am J Gastroenterol. 2010;105:1820–9.

    Google Scholar 

  16. Yamashita K, Yasuda S, Kuba T, Otani Y, Fujiwara M, Okayasu I. Unique characteristics of rectal carcinoma cell lines derived from invasive carcinomas in ulcerative colitis patients. Cancer Sci. 2004;95:211–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kanno J, Aisaki K, Igarashi K, Nakatsu N, Ono A, Kodama Y, et al. “Per cell” normalization method for mRNA measurement by quantitative PCR and microarrays. BMC Genomics. 2006;7:64.

    Google Scholar 

  18. Leung MK, Jones T, Michels CL, Livingston DM, Bhattacharya S. Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrg1. Genomics. 1999;61:307–13.

    Article  PubMed  CAS  Google Scholar 

  19. Sanosaka T, Namihira M, Asano H, Kohyama J, Aisaki K, Igarashi K, et al. Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells. Neuroscience. 2008;155:780–8.

    Article  PubMed  CAS  Google Scholar 

  20. Aisaki K, Aizawa S, Fujii H, Kanno J, Kanno H. Glycolytic inhibition by mutation of pyruvate kinase gene increases oxidative stress and causes apoptosis of a pyruvate kinase deficient cell line. Exp Hematol. 2007;35:1190–200.

    Article  PubMed  CAS  Google Scholar 

  21. Matts SG. The value of rectal biopsy in the diagnosis of ulcerative colitis. Q J Med. 1961;30:393–407.

    PubMed  CAS  Google Scholar 

  22. Sinicrope FA, Lemoine M, Xi L, Lynch PM, Cleary KR, Shen Y, et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology. 1999;117:350–8.

    Article  PubMed  CAS  Google Scholar 

  23. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003;278:16021–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22.

    Article  PubMed  CAS  Google Scholar 

  25. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–67.

    Article  PubMed  CAS  Google Scholar 

  26. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    Article  PubMed  CAS  Google Scholar 

  27. Yoshida T, Mikami T, Mitomi H, Okayasu I. Diverse p53 alterations in ulcerative colitis-associated low-grade dysplasia: full-length gene sequencing in microdissected single crypts. J Pathol. 2003;199:166–75.

    Article  PubMed  CAS  Google Scholar 

  28. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35:S35–8.

    Article  PubMed  CAS  Google Scholar 

  29. Sperling S, Grimm CH, Dunkel I, Mebus S, Sperling HP, Ebner A, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005;26:575–82.

    Article  PubMed  CAS  Google Scholar 

  30. Qu X, Lam E, Doughman YQ, Chen Y, Chou YT, Lam M, et al. Cited2, a coactivator of HNF4alpha, is essential for liver development. EMBO J. 2007;26:4445–56.

    Article  PubMed  CAS  Google Scholar 

  31. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999;13:64–75.

    Article  PubMed  CAS  Google Scholar 

  32. Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 2007;28:941–53.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001;20:5779–88.

    Article  PubMed  CAS  Google Scholar 

  34. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  35. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57:1009–14.

    Article  PubMed  CAS  Google Scholar 

  36. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001;61:6669–73.

    PubMed  CAS  Google Scholar 

  37. Garcia CK, Li X, Luna J, Francke U. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2–p12. Genomics. 1994;23:500–3.

    Article  PubMed  CAS  Google Scholar 

  38. Cuff M, Dyer J, Jones M, Shirazi-Beechey S. The human colonic monocarboxylate transporter Isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterology. 2005;128:676–86.

    Article  PubMed  CAS  Google Scholar 

  39. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.

    Article  PubMed  CAS  Google Scholar 

  40. Yoshida T, Matsumoto N, Mikami T, Okayasu I. Upregulation of p16(INK4A) and Bax in p53 wild/p53-overexpressing crypts in ulcerative colitis-associated tumours. Br J Cancer. 2004;91:1081–8.

    PubMed  CAS  Google Scholar 

  41. Ohkusa T, Okayasu I, Tokoi S, Ozaki Y. Bacterial invasion into the colonic mucosa in ulcerative colitis. J Gastroenterol Hepatol. 1993;8:116–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the technical assistance of Ms. Y. Numata and would like to thank Dr. M. Moore for revising the English of the manuscript. This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Health Sciences Research Grants H18-Kagaku-Ippan-001 from the Ministry of Health, Labour and Welfare, Japan, Grants-in-Aid from Kitasato University Graduate School of Medical Sciences and Kanagawa Nanbyo Foundation.

Conflicts of interest

The authors disclose no conflicts with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Yoshida.

Additional information

The GeneChip data have been deposited in the Percellome project site (http://www.nihs.go.jp/tox/TtgPublication.htm) and are accessible with no restriction.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Sekine, T., Aisaki, Ki. et al. CITED2 is activated in ulcerative colitis and induces p53-dependent apoptosis in response to butyric acid. J Gastroenterol 46, 339–349 (2011). https://doi.org/10.1007/s00535-010-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0355-9

Keywords

Navigation