Skip to main content

Advertisement

Log in

Regulation of gastric acid secretion by the serum and glucocorticoid inducible kinase isoform SGK3

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The serum and glucocorticoid inducible kinase isoform SGK3 is ubiquitously expressed and has been shown to participate in the regulation of cell survival and transport. Similar to SGK1 and protein kinase B (PKB/Akt) isoforms, SGK3 may phosphorylate glycogen synthase kinase (GSK) 3α,β, which has recently been shown to participate in the regulation of basal gastric acid secretion. The present study thus explored the role of SGK3 in the regulation of gastric acid secretion.

Methods

Experiments were performed in isolated glands from gene-targeted mice lacking functional SGK3 (sgk3 /) or from their wild-type littermates (sgk3 +/+). Utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF) fluorescence, gastric acid secretion was determined from Na+-independent pH recovery (∆pH/min) following an ammonium pulse, which reflects H+/K+ adenosine triphosphatase (ATP) ase activity.

Results

Cytosolic pH in isolated gastric glands was similar in sgk3 / and sgk3 +/+ mice. ∆pH/min was, however, significantly larger in sgk3 / than in sgk3 +/+ mice. In both genotypes, ∆pH/min was virtually abolished in the presence of the H+/K+ ATPase inhibitor omeprazole (100 μM) and SCH28080 (500 nM). Increase of extracellular K+ concentrations to 35 mM (replacing Na+/NMDG) or treatment with 5 μM forskolin increased ∆pH/min in sgk3 +/+ mice to a larger extent than in sgk3 / mice and abrogated the differences between genotypes. The protein kinase A inhibitor H89 (150 nM) decreased ∆pH/min to similarly low values in both genotypes.

Conclusions

SGK3 suppresses gastric acid secretion, an effect presumably mediated by the stimulation of protein kinase A with the subsequent activation of K+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BCECF:

2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester

DMSO:

Dimethylsulfoxide

NMDG:

N-methyl d-glucamine

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

FSK:

Forskolin

omp:

Omeprazole

SGK:

Serum and glucocorticoid inducible kinase

PDK:

Phosphoinositide-dependent kinase

PI3K:

Phosphoinositol 3 kinase

References

  1. Hofer AM, Machen TE. K-induced alkalinization in all cell types of rabbit gastric glands: a novel K/H exchange mechanism. J Membr Biol. 1992;126:245–56.

    PubMed  CAS  Google Scholar 

  2. Hou W, Schubert ML. Gastric secretion. Curr Opin Gastroenterol. 2006;22:593–8.

    Article  PubMed  Google Scholar 

  3. Lee HC, Breitbart H, Berman M, Forte JG. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles. Biochim Biophys Acta. 1979;553:107–31.

    Article  PubMed  CAS  Google Scholar 

  4. Yao X, Forte JG. Cell biology of acid secretion by the parietal cell. Annu Rev Physiol. 2003;65:103–31.

    Article  PubMed  CAS  Google Scholar 

  5. Dedek K, Waldegger S. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflugers Arch. 2001;442:896–902.

    Article  PubMed  CAS  Google Scholar 

  6. Heitzmann D, Grahammer F, von Hahn T, Schmitt-Graff A, Romeo E, Nitschke R, et al. Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol. 2004;561:547–57.

    Article  PubMed  CAS  Google Scholar 

  7. Heitzmann D, Koren V, Wagner M, Sterner C, Reichold M, Tegtmeier I, et al. KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels. Cell Physiol Biochem. 2007;19:21–32.

    Article  PubMed  CAS  Google Scholar 

  8. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, et al. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci USA. 2005;102:17864–9.

    Article  PubMed  CAS  Google Scholar 

  9. Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR. Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. J Membr Biol. 2006;210:183–92.

    Article  PubMed  CAS  Google Scholar 

  10. Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci USA. 2003;100:2122–7.

    Article  PubMed  CAS  Google Scholar 

  11. Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295:496–9.

    Article  PubMed  CAS  Google Scholar 

  12. Potet F, Scott JD, Mohammad-Panah R, Escande D, Baro I. AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex. Am J Physiol Heart Circ Physiol. 2001;280:H2038–45.

    PubMed  CAS  Google Scholar 

  13. Ammar DA, Zhou R, Forte JG, Yao X. Syntaxin 3 is required for cAMP-induced acid secretion: streptolysin O-permeabilized gastric gland model. Am J Physiol Gastrointest Liver Physiol. 2002;282:G23–33.

    PubMed  CAS  Google Scholar 

  14. Mettler SE, Ghayouri S, Christensen GP, Forte JG. Modulatory role of phosphoinositide 3-kinase in gastric acid secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293:G532–43.

    Article  PubMed  CAS  Google Scholar 

  15. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15:6541–51.

    PubMed  CAS  Google Scholar 

  16. Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998;8:55–62.

    Article  PubMed  CAS  Google Scholar 

  17. Divecha N, Banfic H, Irvine RF. The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 1991;10:3207–14.

    PubMed  CAS  Google Scholar 

  18. Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, et al. IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch. 2002;443:625–34.

    Article  PubMed  CAS  Google Scholar 

  19. Kobayashi T, Cohen P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J. 1999;339:319–28.

    Article  PubMed  CAS  Google Scholar 

  20. Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J. 1994;13:2313–21.

    PubMed  CAS  Google Scholar 

  21. Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J. 1999;18:3024–33.

    Article  PubMed  CAS  Google Scholar 

  22. Rotte A, Bhandaru M, Ackermann TF, Boini KM, Lang F. Role of PDK1 in regulation of gastric acid secretion. Cell Physiol Biochem. 2008;22:725–34.

    Article  PubMed  CAS  Google Scholar 

  23. Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 2002;21:3728–38.

    Article  PubMed  CAS  Google Scholar 

  24. Rotte A, Pasham V, Bhandaru M, Eichenmüller M, Yang W, Qadri SM, et al. Regulation of gastric acid secretion by PKB/Akt2. Cell Physiol Biochem. 2010;25:695–704.

    Article  PubMed  CAS  Google Scholar 

  25. Rotte A, Pasham V, Eichenmüller M, Yang W, Qadri SM, Bhandaru M, et al. Regulation of basal gastric acid secretion by the glycogen synthase kinase GSK3. J Gastroenterol. 2010;45:1022–32.

    Article  PubMed  CAS  Google Scholar 

  26. Bohmer C, Palmada M, Kenngott C, Lindner R, Klaus F, Laufer J, et al. Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3. FEBS Lett. 2007;581:5586–90.

    Article  PubMed  CAS  Google Scholar 

  27. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev. 2006;86:1151–78.

    Article  PubMed  CAS  Google Scholar 

  28. Strutz-Seebohm N, Seebohm G, Mack AF, Wagner HJ, Just L, Skutella T, et al. Regulation of GluR1 abundance in murine hippocampal neurones by serum- and glucocorticoid-inducible kinase 3. J Physiol. 2005;565:381–90.

    Article  PubMed  CAS  Google Scholar 

  29. Embark HM, Bohmer C, Vallon V, Luft F, Lang F. Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Pflugers Arch. 2003;445:601–6.

    PubMed  CAS  Google Scholar 

  30. Alonso L, Okada H, Pasolli HA, Wakeham A, You T, Mak TW, et al. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J Cell Biol. 2005;170:559–70.

    Article  PubMed  CAS  Google Scholar 

  31. Campagna DR, Custodio AO, Antiochos BB, Cirlan MV, Fleming MD. Mutations in the serum/glucocorticoid regulated kinase 3 (Sgk3) are responsible for the mouse fuzzy (fz) hair phenotype. J Invest Dermatol. 2008;128:730–2.

    Article  PubMed  CAS  Google Scholar 

  32. Masujin K, Okada T, Tsuji T, Ishii Y, Takano K, Matsuda J, et al. A mutation in the serum and glucocorticoid-inducible kinase-like kinase (Sgkl) gene is associated with defective hair growth in mice. DNA Res. 2004;11:371–9.

    Article  PubMed  CAS  Google Scholar 

  33. Mauro TM, McCormick JA, Wang J, Boini KM, Ray L, Monks B, et al. Akt2 and SGK3 are both determinants of postnatal hair follicle development. FASEB J. 2009;23:3193–202.

    Article  PubMed  CAS  Google Scholar 

  34. McCormick JA, Feng Y, Dawson K, Behne MJ, Yu B, Wang J, et al. Targeted disruption of the protein kinase SGK3/CISK impairs postnatal hair follicle development. Mol Biol Cell. 2004;15:4278–88.

    Article  PubMed  CAS  Google Scholar 

  35. Okada T, Ishii Y, Masujin K, Yasoshima A, Matsuda J, Ogura A, et al. The critical roles of serum/glucocorticoid-regulated kinase 3 (SGK3) in the hair follicle morphogenesis and homeostasis: the allelic difference provides novel insights into hair follicle biology. Am J Pathol. 2006;168:1119–33.

    Article  PubMed  CAS  Google Scholar 

  36. Sandu C, Rexhepaj R, Grahammer F, McCormick JA, Henke G, Palmada M, et al. Decreased intestinal glucose transport in the sgk3-knockout mouse. Pflugers Arch. 2005;451:437–44.

    Article  PubMed  CAS  Google Scholar 

  37. Lang UE, Wolfer DP, Grahammer F, Strutz-Seebohm N, Seebohm G, Lipp HP, et al. Reduced locomotion in the serum and glucocorticoid inducible kinase 3 knock out mouse. Behav Brain Res. 2006;167:75–86.

    Article  PubMed  CAS  Google Scholar 

  38. Waisbren SJ, Geibel J, Boron WF, Modlin IM. Luminal perfusion of isolated gastric glands. Am J Physiol. 1994;266:C1013–27.

    PubMed  CAS  Google Scholar 

  39. Roos A, Boron WF. Intracellular pH. Physiol Rev. 1981;61:296–434.

    PubMed  CAS  Google Scholar 

  40. Boyarsky G, Ganz MB, Sterzel RB, Boron WF. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3 . Am J Physiol. 1988;255:C844–56.

    PubMed  CAS  Google Scholar 

  41. Sidani S, Kopic S, Socrates T, Kirchhoff P, Foller M, Murek M, et al. AMP-activated protein kinase: a physiological off switch for murine gastric acid secretion. Pflugers Arch. 2009;459:39–46.

    Article  PubMed  CAS  Google Scholar 

  42. Sidani SM, Kirchhoff P, Socrates T, Stelter L, Ferreira E, Caputo C, et al. DeltaF508 mutation results in impaired gastric acid secretion. J Biol Chem. 2007;282:6068–74.

    Article  PubMed  CAS  Google Scholar 

  43. Gawenis LR, Greeb JM, Prasad V, Grisham C, Sanford LP, Doetschman T, et al. Impaired gastric acid secretion in mice with a targeted disruption of the NHE4 Na+/H+ exchanger. J Biol Chem. 2005;280:12781–9.

    Article  PubMed  CAS  Google Scholar 

  44. Rotte A, Bhandaru M, Foller M, Biswas R, Mack AF, Friedrich B, et al. APC sensitive gastric acid secretion. Cell Physiol Biochem. 2009;23:133–42.

    Article  PubMed  CAS  Google Scholar 

  45. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  PubMed  CAS  Google Scholar 

  46. Sandu C, Artunc F, Grahammer F, Rotte A, Boini KM, Friedrich B, et al. Role of the serum and glucocorticoid inducible kinase SGK1 in glucocorticoid stimulation of gastric acid secretion. Pflugers Arch. 2007;455:493–503.

    Article  PubMed  CAS  Google Scholar 

  47. Lang PA, Schniepp R, Kirchhoff P, Socrates T, Sidani SM, Geibel JP. PI3 kinase dependent stimulation of gastric acid secretion by dexamethasone. Cell Physiol Biochem. 2007;20:527–34.

    Article  PubMed  CAS  Google Scholar 

  48. Luo JC, Lin HY, Lu CL, Wang LY, Chang FY, Lin HC, et al. Dexamethasone inhibits basic fibroblast growth factor-stimulated gastric epithelial cell proliferation. Biochem Pharmacol. 2008;76:841–9.

    Article  PubMed  CAS  Google Scholar 

  49. Yokota A, Taniguchi M, Takahira Y, Tanaka A, Takeuchi K. Dexamethasone damages the rat stomach but not small intestine during inhibition of COX-1. Dig Dis Sci. 2007;52:1452–61.

    Article  PubMed  CAS  Google Scholar 

  50. Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology. 2007;132:261–71.

    Article  PubMed  CAS  Google Scholar 

  51. Wang GZ, Huang GP, Yin GL, Zhou G, Guo CJ, Xie CG, et al. Aspirin can elicit the recurrence of gastric ulcer induced with acetic acid in rats. Cell Physiol Biochem. 2007;20:205–12.

    PubMed  CAS  Google Scholar 

  52. Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH, Nitschke R, et al. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology. 2001;120:1363–71.

    Article  PubMed  CAS  Google Scholar 

  53. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106:1447–55.

    Article  PubMed  CAS  Google Scholar 

  54. Busjahn A, Seebohm G, Maier G, Toliat MR, Nurnberg P, Aydin A, et al. Association of the serum and glucocorticoid regulated kinase (sgk1) gene with QT interval. Cell Physiol Biochem. 2004;14:135–42.

    Article  PubMed  CAS  Google Scholar 

  55. Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR, et al. Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res. 2007;100:686–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the meticulous preparation of the manuscript by Tanja Loch. This work was supported by grants from the DFG (SFB 773). All authors of this manuscript have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

V. Pasham and A. Rotte contributed equally and thus share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasham, V., Rotte, A., Bhandaru, M. et al. Regulation of gastric acid secretion by the serum and glucocorticoid inducible kinase isoform SGK3. J Gastroenterol 46, 305–317 (2011). https://doi.org/10.1007/s00535-010-0348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0348-8

Keywords

Navigation