Skip to main content

Advertisement

Log in

Phenotypic change and accumulation of smooth muscle cells in strictures in Crohn’s disease: relevance to local angiotensin II system

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Intestinal stricture lesions in Crohn’s disease are characterized as submucosal fibromuscular accumulation. There has been a controversy about whether the fibrogenic cells in stricture lesions in Crohn’s disease originate from a smooth muscle cell or a fibroblast lineage. In the present study, we aimed to elucidate: (1) the origin of the fibrogenic cells in stricture lesions; and (2) the roles of the local angiotensin II system, including mast cell chymase, in stricture formation.

Methods

Methanol-Carnoy’s-fixed colonic tissues, obtained from the stricture sites of 18 patients with Crohn’s disease, were analyzed by immunostaining for vimentin, smooth muscle actin (1A4 and CGA7), angiotensin II type-1 receptor, angiotensin II-converting enzyme, and mast cell tryptase and chymase. As controls, unaffected (normal) portions of 11 colonic tumor specimens were also investigated.

Results

Submucosal fibromuscular accumulation was seen in every stricture lesion. The majority of mesenchymal cells accumulated in the stricture lesions were moderately differentiated intestinal smooth muscle cells [vimentin(+), 1A4(+), and CGA7(+)]. Moreover, occasional intestinal smooth muscle cells in the muscular layers, adjacent to the site of the submucosal fibromuscular response, showed distinct positivity for vimentin, indicating phenotypic modulation toward an immature, or dedifferentiated state. These smooth muscle cells accumulated in the stricture lesions were positive for angiotensin II type-1 receptor. Abundant chymase-positive mast cells were distributed in these lesions.

Conclusions

These results suggest that the proliferation and migration of moderately differentiated intestinal smooth muscle cells from the muscular layers are the major pathologicalmechanisms in stricture formation in Crohn’s disease, and the angiotensin II system is involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Assche G, Geboes K, Rutgeerts P. Medical therapy for Crohn’s disease strictures. Inflamm Bowel Dis. 2004;10:55–60.

    Article  PubMed  Google Scholar 

  2. Graham MF. Pathogenesis of intestinal strictures in Crohn’s disease—an update. Inflamm Bowel Dis. 1995;1:220–7.

    Article  Google Scholar 

  3. Burke JP, Mulsow JJ, O’Keane C, Docherty NG, Watson RW, O’Connell PR. Fibrogenesis in Crohn’s disease. Am J Gastroenterol. 2007;102:439–48.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka M, Riddell RH. The pathological diagnosis and differential diagnosis of Crohn’s disease. Hepatogastroenterology. 1990;37:18–31.

    CAS  PubMed  Google Scholar 

  5. Kelly JK, Siu TO. The strictures, sinuses, and fissures of Crohn’s disease. J Clin Gastroenterol. 1986;8:594–8.

    Article  CAS  PubMed  Google Scholar 

  6. Koukoulis G, Ke Y, Henley JD, Cummings OW. Obliterative muscularization of the small bowel submucosa in Crohn disease: a possible mechanism of small bowel obstruction. Arch Pathol Lab Med. 2001;125:1331–4.

    CAS  PubMed  Google Scholar 

  7. Pucilowska JB, Williams KL, Lund PK. Fibrogenesis. IV. Fibrosis and inflammatory bowel disease: cellular mediators and animal models. Am J Physiol Gastrointest Liver Physiol. 2000;279:G653–9.

    CAS  PubMed  Google Scholar 

  8. Gelbmann CM, Mestermann S, Gross V, Köllinger M, Schölmerich J, Falk W. Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut. 1999;45:210–7.

    Article  CAS  PubMed  Google Scholar 

  9. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77:1033–79.

    CAS  PubMed  Google Scholar 

  10. Ruoss SJ, Hartmann T, Caughey GH. Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest. 1991;88:493–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kofford MW, Schwartz LB, Schechter NM, Yager DR, Diegelmann RF, Graham MF. Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide. J Biol Chem. 1997;272:7127–31.

    Article  CAS  PubMed  Google Scholar 

  12. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA. 1986;83:4464–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ng KK, Vane JR. Fate of angiotensin I in the circulation. Nature. 1968;218:144–50.

    Article  CAS  PubMed  Google Scholar 

  14. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990;265:22348–57.

    CAS  PubMed  Google Scholar 

  15. Ganong WF. Endocrine functions of the kidneys, heart, and pineal gland. In: Review of medical physiology. 20th ed. New York: McGraw-Hill; 2001, p. 439–451.

  16. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991;68:450–6.

    CAS  PubMed  Google Scholar 

  17. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351:233–6.

    Article  CAS  PubMed  Google Scholar 

  18. Inagami T, Kitami Y. Angiotensin II receptor: molecular cloning, functions, and regulation. Hypertens Res. 1994;17:87–97.

    Article  CAS  Google Scholar 

  19. Matsuo T, Ikura Y, Ohsawa M, Ogami M, Kayo S, Yoshimi N, et al. Mast cell chymase expression in Helicobacter pylori-associated gastritis. Histopathology. 2003;43:538–49.

    Article  CAS  PubMed  Google Scholar 

  20. Ikura Y, Ohsawa M, Shirai N, Sugama Y, Fukushima H, Suekane T, et al. Expression of angiotensin II type 1 receptor in human cirrhotic livers: Its relation to fibrosis and portal hypertension. Hepatol Res. 2005;32:107–16.

    Article  CAS  PubMed  Google Scholar 

  21. Gown AM, Vogel AM, Gordon D, Lu PL. A smooth muscle-specific monoclonal antibody recognizes smooth muscle actin isozymes. J Cell Biol. 1985;100:807–13.

    Article  CAS  PubMed  Google Scholar 

  22. Gown AM, Tsukada T, Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. 1986;125:191–207.

    CAS  PubMed  Google Scholar 

  23. Ueda M, Becker AE, Tsukada T, Numano F, Fujimoto T. Fibrocellular tissue response after percutaneous transluminal coronary angioplasty. An immunocytochemical analysis of the cellular composition. Circulation. 1991;83:1327–32.

    CAS  PubMed  Google Scholar 

  24. Ueda M, Becker AE, Naruko T, Kojima A. Smooth muscle cell de-differentiation is a fundamental change preceding wound healing after percutaneous transluminal coronary angioplasty in humans. Coron Artery Dis. 1995;6:71–81.

    Article  CAS  PubMed  Google Scholar 

  25. Ohishi M, Ueda M, Rakugi H, Okamura A, Naruko T, Becker AE, et al. Upregulation of angiotensin-converting enzyme during the healing process after injury at the site of percutaneous transluminal coronary angioplasty in humans. Circulation. 1997;96:3328–37.

    CAS  PubMed  Google Scholar 

  26. Rakugi H, Okamura A, Kamide K, Ohishi M, Sasamura H, Morishita R, et al. Recognition of tissue- and subtype-specific modulation of angiotensin II receptors using antibodies against AT1 and AT2 receptors. Hypertens Res. 1997;20:51–5.

    Article  CAS  PubMed  Google Scholar 

  27. Takada Y, Unno M, Hiwada K, Kokubu T. Immunological and immunofluorescent studies of human angiotensin-converting enzyme. Clin Sci Lond. 1981;61(Suppl 7):253s–6s.

    CAS  PubMed  Google Scholar 

  28. van der Loos CM, Becker AE, van den Oord JJ. Practical suggestions for successful immunoenzyme double-staining experiments. Histochem J. 1993;25:1–13.

    Article  PubMed  Google Scholar 

  29. Dvorak AM, Osage JE, Monahan RA, Dickersin GR. Crohn’s disease: transmission electron microscopic studies. III. Target tissues. Proliferation of and injury to smooth muscle and the autonomic nervous system. Hum Pathol. 1980;11:620–34.

    Article  CAS  PubMed  Google Scholar 

  30. Graham MF, Drucker DE, Diegelmann RF, Elson CO. Collagen synthesis by human intestinal smooth muscle cells in culture. Gastroenterology. 1987;92:400–5.

    CAS  PubMed  Google Scholar 

  31. Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S, et al. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology. 1988;94:257–65.

    CAS  PubMed  Google Scholar 

  32. Pucilowska JB, McNaughton KK, Mohapatra NK, Hoyt EC, Zimmermann EM, Sartor RB, et al. IGF-I and procollagen alpha1(I) are coexpressed in a subset of mesenchymal cells in active Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1307–22.

    CAS  PubMed  Google Scholar 

  33. Groma V, Marcussen N, Olsen S. A quantitative immunohistochemical study of the expression of mesangial alpha-smooth muscle actin and the proliferation marker Ki-67 in glomerulonephritis in man. Virchows Arch. 1997;431:345–50.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt-Gräff A, Krüger S, Bochard F, Gabbiani G, Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol. 1991;138:1233–42.

    PubMed  Google Scholar 

  35. Connell ND, Rheinwald JG. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983;34:245–53.

    Article  CAS  PubMed  Google Scholar 

  36. Van Muijen GN, Ruiter DJ, Warnaar SO. Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest. 1987;57:359–69.

    PubMed  Google Scholar 

  37. Takahashi K, Jones PM, Kanse SM, Lam HC, Spokes RA, Ghatei MA, et al. Endothelin in the gastrointestinal tract. Presence of endothelinlike immunoreactivity, endothelin-1 messenger RNA, endothelin receptors, and pharmacological effect. Gastroenterology. 1990;99:1660–7.

    CAS  PubMed  Google Scholar 

  38. Khan H, Naylor RJ, Tuladhar BR. Pharmacological characterization of endothelin receptors-mediated contraction in the mouse isolated proximal and distal colon. Br J Pharmacol. 2006;147:607–11.

    Article  CAS  PubMed  Google Scholar 

  39. Ehrlich HP, Allison GM, Page MJ, Kolton WA, Graham M. Increased gelsolin expression and retarded collagen lattice contraction with smooth muscle cells from Crohn’s diseased intestine. J Cell Physiol. 2000;182:303–9.

    Article  CAS  PubMed  Google Scholar 

  40. Regan MC, Flavin BM, Fitzpatrick JM, O’Connell PR. Stricture formation in Crohn’s disease: the role of intestinal fibroblasts. Ann Surg. 2000;231:46–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hiatt RB, Katz L. Mast cells in inflammatory conditions of the gastrointestinal tract. Am J Gastroenterol. 1962;37:541–5.

    CAS  PubMed  Google Scholar 

  42. Yamada M, Ueda M, Naruko T, Tanabe S, Han YS, Ikura Y, et al. Mast cell chymase expression and mast cell phenotypes in human rejected kidneys. Kidney Int. 2001;59:1374–81.

    Article  CAS  PubMed  Google Scholar 

  43. Mitani Y, Ueda M, Maruyama K, Shimpo H, Kojima A, Matsumura M, et al. Mast cell chymase in pulmonary hypertension. Thorax. 1999;54:88–90.

    Article  CAS  PubMed  Google Scholar 

  44. Ohishi M, Ueda M, Rakugi H, Naruko T, Kojima A, Okamura A, et al. Relative localization of angiotensin-converting enzyme, chymase and angiotensin II in human coronary atherosclerotic lesions. J Hypertens. 1999;17:547–53.

    Article  CAS  PubMed  Google Scholar 

  45. Jaszewski R, Tolia V, Ehrinpreis MN, Bodzin JH, Peleman RR, Korlipara R, et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990;98:1543–8.

    CAS  PubMed  Google Scholar 

  46. Wengrower D, Zanninelli G, Pappo O, Latella G, Sestieri M, Villanova A, et al. Prevention of fibrosis in experimental colitis by captopril: the role of TGF-beta1. Inflamm Bowel Dis. 2004;10:536–45.

    Article  PubMed  Google Scholar 

  47. Jahovic N, Ercan F, Gedik N, Yüksel M, Sener G, Alican I. The effect of angiotensin-converting enzyme inhibitors on experimental colitis in rats. Regul Pept. 2005;130:67–74.

    Article  CAS  PubMed  Google Scholar 

  48. Inokuchi Y, Morohashi T, Kawana I, Nagashima Y, Kihara M, Umemura S. Amelioration of 2, 4, 6-trinitrobenzene sulphonic acid induced colitis in angiotensinogen gene knockout mice. Gut. 2005;54:349–56.

    Article  CAS  PubMed  Google Scholar 

  49. Hume GE, Fowler EV, Lincoln D, Eri R, Templeton D, Florin TH, et al. Angiotensinogen and transforming growth factor beta1: novel genes in the pathogenesis of Crohn’s disease. J Med Genet 2006;43:e51.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Shigeko Nagahisa for her excellent technical assistance in histochemistry and immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiko Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suekane, T., Ikura, Y., Watanabe, K. et al. Phenotypic change and accumulation of smooth muscle cells in strictures in Crohn’s disease: relevance to local angiotensin II system. J Gastroenterol 45, 821–830 (2010). https://doi.org/10.1007/s00535-010-0232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0232-6

Keywords