Journal of Gastroenterology

, Volume 45, Issue 6, pp 608–617 | Cite as

Early-stage blocking of Notch signaling inhibits the depletion of goblet cells in dextran sodium sulfate-induced colitis in mice

  • Misumi Shinoda
  • Masaharu Shin-YaEmail author
  • Yuji Naito
  • Tsunao Kishida
  • Reiko Ito
  • Norihisa Suzuki
  • Hiroaki Yasuda
  • Junichi Sakagami
  • Jiro Imanishi
  • Keisho Kataoka
  • Osam MazdaEmail author
  • Toshikazu Yoshikawa
Original Article—Alimentary Tract



Goblet cells, which contribute to mucosal defense and repair in the intestinal epithelium, are depleted in human and rodent colitis. The Notch signal pathway regulates the differentiation of intestinal stem cells into epithelial cells and inhibits the differentiation of secretory lineages, including goblet cells. The aim of our study was to clarify whether the blocking of the Notch pathway at an early stage of colitis would preserve goblet cells and facilitate the healing process in dextran sulfate sodium (DSS)-induced colitis in mice.


DSS was orally administered to C57/BL6 mice for 7 days, and dibenzazepine (DBZ), a Notch pathway blocker, was administered for 5 consecutive days, beginning on the first day of DSS treatment. Colonic mucosal inflammation was evaluated clinically, biochemically, and histologically. The expression of the goblet cell-associated genes Math1 and MUC2 and proinflammatory cytokines was evaluated by real-time reverse-transcriptase-PCR, with the expression of Math1 and MUC2 also visualized by immunohistochemical examination.


The administration of DBZ at 4 μmol/kg significantly reduced the severity of the colitis. Compared with the DSS only-treated intestine, the number of goblet cells was relatively sustained, and the expression of Math1 and MUC2 was also elevated in the DSS/DBZ-treated intestine. DBZ treatment suppressed the mRNA levels for interleukin-1β and -6, and matrix metalloproteinases-3 and -9 in the DSS-treated intestine.


Early-stage blocking of Notch signaling may ameliorate acute DSS colitis by preventing reduction in the number of goblet cells.


Inflammatory bowel disease Goblet cells Notch signal 



Disease activity index




Dextran sulfate sodium



We are grateful to Dr. S. Kokura (Kyoto Prefectural University of Medicine, Kyoto, Japan) for helpful discussion. We also thank Dr. W. T. V. Germeraad (University Hospital Maastricht, Maastricht, The Netherlands) for his critical reading of the manuscript. This study was supported by a grant-in-aid of the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Supplementary material

535_2010_210_MOESM1_ESM.pdf (39 kb)
Supplementary Figure S1 (PDF 39.4 kb)


  1. 1.
    Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology. 2008;134:849–64.CrossRefPubMedGoogle Scholar
  2. 2.
    de Santa Barbara P, van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60:1322–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2008;14:401–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK. A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J Clin Invest. 1999;104:1539–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Bouma J, Gerwig GJ, et al. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology. 2005;337:210–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Allen A, Hutton DA, Pearson JP. The MUC2 gene product: a human intestinal mucin. Int J Biochem Cell Biol. 1998;30:797–801.CrossRefPubMedGoogle Scholar
  7. 7.
    Shirazi T, Longman RJ, Corfield AP, Probert CS. Mucins and inflammatory bowel disease. Postgrad Med J. 2000;76:473–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43:1–17.CrossRefPubMedGoogle Scholar
  9. 9.
    McCormick DA, Horton LW, Mee AS. Mucin depletion in inflammatory bowel disease. J Clin Pathol. 1990;43:143–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Tytgat KM, van der Wal JW, Einerhand AW, Buller HA, Dekker J. Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochem Biophys Res Commun. 1996;224:397–405.CrossRefPubMedGoogle Scholar
  11. 11.
    Renes IB, Verburg M, Van Nispen DJ, Taminiau JA, Buller HA, Dekker J, et al. Epithelial proliferation, cell death, and gene expression in experimental colitis: alterations in carbonic anhydrase I, mucin MUC2, and trefoil factor 3 expression. Int J Colorectal Dis. 2002;17:317–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol. 2003;14:113–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24:2437–47.CrossRefPubMedGoogle Scholar
  15. 15.
    Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995;377:355–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, et al. Control of endodermal endocrine development by Hes-1. Nat Genet. 2000;24:36–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Kageyama R, Ohtsuka T, Tomita K. The bHLH gene Hes1 regulates differentiation of multiple cell types. Mol Cells. 2000;10:1–7.CrossRefPubMedGoogle Scholar
  19. 19.
    van Den Brink GR, de Santa Barbara P, Roberts DJ. Development. Epithelial cell differentiation—a matter of choice. Science. 2001;294:2115–6.CrossRefGoogle Scholar
  20. 20.
    Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology. 2007;132:2478–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem. 2003;278:46107–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, et al. Chronic treatment with the gamma-secretase inhibitor LY-411, 575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279:12876–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82:341–58.CrossRefPubMedGoogle Scholar
  24. 24.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Okamoto R, Tsuchiya K, Nemoto Y, Akiyama J, Nakamura T, Kanai T, et al. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2009;296:G23–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Gersemann M, Becker S, Kubler I, Koslowski M, Wang G, Herrlinger KR, et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation. 2009;77:84–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.PubMedGoogle Scholar
  28. 28.
    Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J, et al. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol. 2006;146:330–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, et al. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003;422:438–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF. Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D. 2006;7:87–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 2002;21:1948–56.CrossRefPubMedGoogle Scholar
  32. 32.
    Lammich S, Okochi M, Takeda M, Kaether C, Capell A, Zimmer AK, et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem. 2002;277:44754–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Ikeuchi T, Sisodia SS. The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem. 2003;278:7751–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, et al. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol. 2005;28:126–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Barten DM, Guss VL, Corsa JA, Loo A, Hansel SB, Zheng M, et al. Dynamics of {beta}-amyloid reductions in brain, cerebrospinal fluid, and plasma of {beta}-amyloid precursor protein transgenic mice treated with a {gamma}-secretase inhibitor. J Pharmacol Exp Ther. 2005;312:635–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, et al. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 2008;38:174–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell. 2004;117:515–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Benson RA, Adamson K, Corsin-Jimenez M, Marley JV, Wahl KA, Lamb JR, et al. Notch1 co-localizes with CD4 on activated T cells and Notch signaling is required for IL-10 production. Eur J Immunol. 2005;35:859–69.CrossRefPubMedGoogle Scholar
  39. 39.
    Naito Y, Yoshikawa T. Role of matrix metalloproteinases in inflammatory bowel disease. Mol Aspects Med. 2005;26:379–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Medina C, Radomski MW. Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol Exp Ther. 2006;318:933–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Baugh MD, Perry MJ, Hollander AP, Davies DR, Cross SS, Lobo AJ, et al. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology. 1999;117:814–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Garg P, Ravi A, Patel NR, Roman J, Gewirtz AT, Merlin D, et al. Matrix metalloproteinase-9 regulates MUC-2 expression through its effect on goblet cell differentiation. Gastroenterology. 2007;132:1877–89.CrossRefPubMedGoogle Scholar
  43. 43.
    Tytgat KM, Opdam FJ, Einerhand AW, Buller HA, Dekker J. MUC2 is the prominent colonic mucin expressed in ulcerative colitis. Gut. 1996;38:554–63.CrossRefPubMedGoogle Scholar
  44. 44.
    Hoebler C, Gaudier E, De Coppet P, Rival M, Cherbut C. MUC genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate-treated mice. Dig Dis Sci. 2006;51:381–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131:117–29.CrossRefPubMedGoogle Scholar
  46. 46.
    Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 2001;76:173–81.CrossRefPubMedGoogle Scholar
  47. 47.
    De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398:518–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Guilmeau S, Flandez M, Bancroft L, Sellers RS, Tear B, Stanley P, et al. Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology. 2008;135:849–60, 860 e1–6.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Misumi Shinoda
    • 1
    • 2
  • Masaharu Shin-Ya
    • 2
    Email author
  • Yuji Naito
    • 1
  • Tsunao Kishida
    • 2
  • Reiko Ito
    • 1
    • 2
    • 3
  • Norihisa Suzuki
    • 1
  • Hiroaki Yasuda
    • 1
  • Junichi Sakagami
    • 1
  • Jiro Imanishi
    • 2
  • Keisho Kataoka
    • 1
  • Osam Mazda
    • 2
    Email author
  • Toshikazu Yoshikawa
    • 1
  1. 1.Department of GastroenterologyKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Department of MicrobiologyKyoto Prefectural University of MedicineKyotoJapan
  3. 3.Department of DermatologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations