Skip to main content

Advertisement

Log in

Effect of exclusive enteral nutrition on bone turnover in children with Crohn’s disease

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Poor bone acquisition and increased fracture risk are significant complications associated with Crohn’s disease (CD). The aim of this study was to determine the effects of 8 weeks of exclusive enteral nutrition (EEN) therapy upon markers of bone turnover in children with newly diagnosed CD.

Methods

Twenty-three children with newly diagnosed CD and 20 controls (without CD) were enrolled. Children with CD were treated with 8 weeks of EEN. Inflammatory markers [C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), albumin, platelets], nutritional markers (height, weight), and bone markers [C-terminal telopeptides of Type-1 collagen (CTX) and bone specific alkaline phosphatase (BAP)] were measured prior to and following therapy.

Results

At diagnosis, children with CD had elevated serum CTX (2.967 ± 0.881 ng/ml) compared to controls (2.059 ± 0.568 ng/ml; P = 0.0003). Following the period of EEN, CTX levels fell significantly (2.260 ± 0.547 ng/ml; P = 0.002), while serum BAP levels (51.24 ± 31.31 μg/L at diagnosis; control serum BAP = 66.80 ± 23.23 μg/L; P = 0.07) increased significantly (64.82 ± 30.51 μg/L; P = 0.02), with both normalizing to control levels.

Conclusions

As well as reducing inflammation, decreasing disease activity, and improving nutrition in children with newly diagnosed CD, EEN therapy also normalized serum markers of bone turnover, suggesting an improvement in bone health. Further investigations of short- and long-term effects of EEN on bone density and overall bone health are now required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernstein CN, Seeger LL, Sayre JW, Anton PA, Artinian L, Shanahan F. Decreased bone density in inflammatory bowel disease is related to corticosteroid use and not disease diagnosis. J Bone Miner Res. 1995;10:250–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bjarnason I, Macpherson A, Mackintosh C, Buxton-Thomas M, Forgacs I, Moniz C. Reduced bone density in patients with inflammatory bowel disease. Gut. 1997;40:228–33.

    CAS  PubMed  Google Scholar 

  3. Pigot F, Roux C, Chaussade S, Hardelin D, Pelleter O, Du Puy Montbrun T, et al. Low bone mineral density in patients with inflammatory bowel disease. Dig Dis Sci. 1992;37:1396–403.

    Article  CAS  PubMed  Google Scholar 

  4. Boot AM, Bouquet J, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut. 1998;42:188–94.

    CAS  PubMed  Google Scholar 

  5. Compston JE, Judd D, Crawley EO, Evans WD, Evans C, Church HA, et al. Osteoporosis in patients with inflammatory bowel disease. Gut. 1987;28:410–5.

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh S, Cowen S, Hannan WJ, Ferguson A. Low bone mineral density in Crohn’s disease, but not in ulcerative colitis, at diagnosis. Gastroenterology. 1994;107:1031–9.

    CAS  PubMed  Google Scholar 

  7. Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114:902–11.

    Article  CAS  PubMed  Google Scholar 

  8. Jahnsen J, Falch JA, Aadland E, Mowinckel P. Bone mineral density is reduced in patients with Crohn’s disease but not in patients with ulcerative colitis: a population based study. Gut. 1997;40:313–9.

    CAS  PubMed  Google Scholar 

  9. Cowan FJ, Warner JT, Dunstan FD, Evans WD, Gregory JW, Jenkins HR. Inflammatory bowel disease and predisposition to osteopenia. Arch Dis Child. 1997;76:325–9.

    Article  CAS  PubMed  Google Scholar 

  10. Issenman RM, Atkinson SA, Radoja C, Fraher L. Longitudinal assessment of growth, mineral metabolism, and bone mass in pediatric Crohn’s disease. J Pediatr Gastroenterol Nutr. 1993;17:401–6.

    Article  CAS  PubMed  Google Scholar 

  11. Semeao EJ, Jawad AF, Stouffer NO, Zemel BS, Piccoli DA, Stallings VA. Risk factors for low bone mineral density in children and young adults with Crohn’s disease. J Pediatr. 1999;135:593–600.

    Article  CAS  PubMed  Google Scholar 

  12. Semeao EJ, Jawad AF, Zemel BS, Neiswender KM, Piccoli DA, Stallings VA. Bone mineral density in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 1999;5:161–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schulte C, Goebell H, Roher HD, Schulte KM. Genetic determinants of IL-6 expression levels do not influence bone loss in inflammatory bowel disease. Dig Dis Sci. 2001;46:2521–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pollak RD, Karmeli F, Eliakim R, Ackerman Z, Tabb K, Rachmilewitz D. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol. 1998;93:1483–90.

    Article  CAS  PubMed  Google Scholar 

  15. Silvennoinen JA, Karttunen TJ, Niemela SE, Manelius JJ, Lehtola JK. A controlled study of bone mineral density in patients with inflammatory bowel disease. Gut. 1995;37:71–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133:795–9.

    CAS  PubMed  Google Scholar 

  17. Roux C, Abitbol V, Chaussade S, Kolta S, Guillemant S, Dougados M, et al. Bone loss in patients with inflammatory bowel disease: a prospective study. Osteoporos Int. 1995;5:156–60.

    Article  CAS  PubMed  Google Scholar 

  18. Harpavat M, Greenspan SL, O’Brien C, Chang C-C, Bowen AD, Keljo DJ. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr. 2005;40:295–300.

    Article  PubMed  Google Scholar 

  19. Day AS, Whitten KE, Lemberg DA, Clarkson C, Vitug-Sales M, Jackson R, et al. Exclusive enteral feeding as primary therapy for Crohn’s disease in Australian children and adolescents: a feasible and effective approach. J Gastroenterol Hepatol. 2006;21:1609–14.

    Article  PubMed  Google Scholar 

  20. Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J Pediatr Gastroenterol Nutr. 2000;31:8–15.

    Article  CAS  PubMed  Google Scholar 

  21. Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, et al. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2000;14:281–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dear KLE, Compston JE, Hunter JO. Treatments for Crohn’s disease that minimise steroid doses are associated with a reduced risk of osteoporosis. Clin Nutr. 2001;20:541–6.

    Article  CAS  PubMed  Google Scholar 

  23. Day AS, Whitten KE, Sidler M, Lemberg DA. Systematic review: nutritional therapy in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2008;27:293–307.

    CAS  PubMed  Google Scholar 

  24. Bannerjee K, Camacho-Hubner C, Babinska K, Dryhurst KM, Edwards R, Savage MO, et al. Anti-inflammatory and growth-stimulating effects precede nutritional restitution during enteral feeding in Crohn disease. J Pediatr Gastroenterol Nutr. 2004;38:270–5.

    Article  CAS  PubMed  Google Scholar 

  25. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002;13:523–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.

    Article  CAS  PubMed  Google Scholar 

  27. Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19:5–36.

    PubMed  Google Scholar 

  28. Schofield WN, Schofield L, James PWT. Predicting basal metabolic rate: new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39C(Suppl 1):5–41.

    Google Scholar 

  29. Hyams JS, Mandel F, Ferry GD, Gryboski JD, Kibort PM, Kirschner BS, et al. Relationship of common laboratory parameters to the activity of Crohn’s disease in children. J Pediatr Gastroenterol Nutr. 1992;14:216–22.

    Article  CAS  PubMed  Google Scholar 

  30. Bartram SA, Peaston RT, Rawlings DJ, Walshaw D, Francis RM, Thompson NP. Mutifactorial analysis of risk factors for reduced bone mineral density in patients with Crohn’s disease. World J Gastroenterol. 2006;12:5680–6.

    PubMed  Google Scholar 

  31. Dresner-Pollak R, Karmeli F, Eliakim R, Ackerman Z, Rachmilewitz D. Increased urinary N-telopeptide cross-linked type 1 collagen predicts bone loss in patients with inflammatory bowel disease. Am J Gastroenterol. 2000;95:699–704.

    Article  CAS  PubMed  Google Scholar 

  32. Schulte C, Dignass AU, Mann K, Goebell H. Reduced bone mineral density and unbalanced bone metabolism in patients with inflammatory bowel disease. Inflamm Bowel Dis. 1998;4:268–75.

    Article  CAS  PubMed  Google Scholar 

  33. Sylvester FA, Davis PM, Wyzga N, Hyams JS, Lerer T. Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr. 2006;148:461–6.

    Article  CAS  PubMed  Google Scholar 

  34. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:42–50.

    Article  PubMed  Google Scholar 

  35. Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153:484–90.

    Article  CAS  PubMed  Google Scholar 

  36. Franchimont N, Putzeys V, Collette J, Vermeire S, Rutgeerts P, De Vos M, et al. Rapid improvement of bone metabolism after infliximab treatment in Crohn’s disease. Aliment Pharmacol Ther. 2004;20:607–14.

    Article  CAS  PubMed  Google Scholar 

  37. Bernstein CN, Leslie WD. The pathophysiology of bone disease in gastrointestinal disease. Eur J Gastroenterol Hepatol. 2003;15:857–64.

    Article  CAS  PubMed  Google Scholar 

  38. Meister D, Bode J, Shand A, Ghosh S. Anti-inflammatory effects of enteral diet components on Crohn’s disease-affected tissues in vitro. Dig Liver Dis. 2002;34:430–8.

    Article  CAS  PubMed  Google Scholar 

  39. de Jong NSH, Leach ST, Day AS. Polymeric formula has direct anti-inflammatory effects on enterocytes in an in vitro model of intestinal inflammation. Dig Dis Sci. 2007;52:2029–36.

    Article  CAS  PubMed  Google Scholar 

  40. Heer M, Mika C, Grzella I, Heussen N, Herpertz-Dahlmann B. Bone turnover during inpatient nutritional therapy and outpatient follow-up in patients with anorexia nervosa compared with that in healthy control subjects. Am J Clin Nutr. 2004;80:774–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded in part by the Sydney Children’s Hospital Foundation. Osmolite was supplied by Abbott Australasia. Laboratory research was undertaken in the Westfield Research Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitten, K.E., Leach, S.T., Bohane, T.D. et al. Effect of exclusive enteral nutrition on bone turnover in children with Crohn’s disease. J Gastroenterol 45, 399–405 (2010). https://doi.org/10.1007/s00535-009-0165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0165-0

Keywords

Navigation