Skip to main content

Advertisement

Log in

−651C/T promoter polymorphism in the CD14 gene is associated with severity of acute pancreatitis in Japan

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to clarify the association of the promoter variants in the CD14 gene with pancreatic diseases in Japan.

Methods

Three hundred forty-six unrelated patients with acute pancreatitis (AP) (107 with severe and 239 with mild), 263 patients with chronic pancreatitis (CP), 264 patients with pancreatic neoplasm, and 319 healthy controls were genotyped for the single nucleotide polymorphisms at positions −260 and −651 from the AUG start codon in the CD14 gene by polymerase chain reaction-restriction enzyme digestion.

Results

The allele and genotype frequencies of the −260C/T and −651C/T polymorphisms did not differ between controls and patients with AP. In subgroup analyses, patients with severe AP had more −651C allele than controls [P = 0.005; odds ratio (OR) 1.71; 95% confidence interval (CI) = 1.18–2.49] or patients with mild AP (P = 0.001; OR 1.95; 95% CI = 1.33–2.85). Genotype −651CC was more common (P = 0.001 vs. controls and P = 0.001 vs. mild AP), and −651CT was less (P = 0.009 vs. controls and P = 0.007 vs. mild AP) in patients with severe AP than in healthy controls or patients with mild AP. The frequencies of pseudocyst development and requirement of surgery were higher in AP patients with −651CC than in those without this genotype. The −260C/T polymorphism was not associated with the severity of AP. The allele and genotype frequencies of both polymorphisms did not differ between controls and patients with CP or pancreatic neoplasm.

Conclusion

−651C/T promoter polymorphism in the CD14 gene was associated with severity of AP in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

Acute pancreatitis

CI:

Confidence interval

CP:

Chronic pancreatitis

CRP:

C-reactive protein

IL:

Interleukin

LPS:

Lipopolysaccharide

OR:

Odds ratio

sCD14:

Soluble CD14

TLR:

Toll-like receptor

References

  1. Isenmann R, Beger HG. Natural history of acute pancreatitis and the role of infection. Best Pract Res Clin Gastroenterol. 1999;13:291–301.

    Article  CAS  Google Scholar 

  2. Banks PA, Freeman ML, Practice Parameters Committee of the American College of Gastroenterology. Practice guideline in acute pancreatitis. Am J Gastroenterol. 2006;101:2379–400.

    Article  PubMed  Google Scholar 

  3. Pandol SJ, Saluja AK, Imrie CW, Banks PA. Acute pancreatitis: bench to the bedside. Gastroenterology. 2007;132:1127–51.

    Article  CAS  PubMed  Google Scholar 

  4. Papachristou GI, Sass DA, Avula H, Lamb J, Lokshin A, Barmada MM, et al. Is the monocyte chemotactic protein-1–2518 G allele a risk factor for severe acute pancreatitis? Clin Gastroenterol Hepatol. 2005;3:475–81.

    Article  CAS  PubMed  Google Scholar 

  5. Kume K, Masamune A, Mizutamari H, Kaneko K, Kikuta K, Satoh M, et al. Mutations in the serine protease inhibitor Kazal Type 1 (SPINK1) gene in Japanese patients with pancreatitis. Pancreatology. 2005;5:354–60.

    Article  CAS  PubMed  Google Scholar 

  6. O’Reilly DA, Witt H, Rahman SH, Schulz HU, Sargen K, Kage A. The SPINK1 N34S variant is associated with acute pancreatitis. Eur J Gastroenterol Hepatol. 2008;20:726–31.

    Article  PubMed  Google Scholar 

  7. Masamune A, Kume K, Shimosegawa T. Differential roles of the SPINK1 gene mutations in alcoholic and nonalcoholic chronic pancreatitis. J Gastroenterol. 2007;42(Suppl 17):135–40.

    Article  CAS  PubMed  Google Scholar 

  8. Kume K, Masamune A, Takagi Y, Kikuta K, Watanabe T, Satoh K, et al. A loss-of-function p.G191R variant in the anionic trypsinogen (PRSS2) gene in Japanese patients with pancreatic disorders. Gut. 2009;58:820–4.

    Article  CAS  PubMed  Google Scholar 

  9. Hofner P, Balog A, Gyulai Z, Farkas G, Rakonczay Z, Takács T, et al. Polymorphism in the IL-8 gene, but not in the TLR4 gene, increases the severity of acute pancreatitis. Pancreatology. 2006;6:542–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sargon K, Demaine AG, Kingsnorth AN. Cytokine gene polymorphisms in acute pancreatitis. JOP. 2000;1:24–35.

    Google Scholar 

  11. Zhang D, Li J, Jiang ZW, Yu B, Tang X. Association of two polymorphisms of tumor necrosis factor gene with acute severe pancreatitis. J Surg Res. 2003;112:138–43.

    Article  CAS  PubMed  Google Scholar 

  12. Makhija R, Kingsnorth A, Demaine A. Gene polymorphisms of the macrophage migration inhibitory factor and acute pancreatitis. JOP. 2007;8:289–95.

    PubMed  Google Scholar 

  13. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3.

    Article  CAS  PubMed  Google Scholar 

  14. Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, et al. CD14 is a pattern recognition receptor. Immunity. 1994;1:509–16.

    Article  CAS  PubMed  Google Scholar 

  15. Landmann R, Muller B, Zimmerli W. CD14, new aspects of ligand and signal diversity. Microbes Infect. 2000;2:295–304.

    Article  CAS  PubMed  Google Scholar 

  16. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  17. Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, et al. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992;176:1665–71.

    Article  CAS  PubMed  Google Scholar 

  18. Haziot A, Ferrero E, Köntgen F, Hijiya N, Yamamoto S, Silver J, et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity. 1996;4:407–14.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Wu L, Wu K, Zhang R, Dong Y. Roles of endotoxin-related signaling molecules in the progression of acute necrotizing pancreatitis in mice. Pancreas. 2005;31:251–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sharif R, Dawra RK, Wasiluk K, Phillips P, Dudeja V, Kurt-Jones E, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58:813–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rahman SH, Salter G, Holmfield JH, Larvin M, McMahon MJ. Soluble CD14 receptor expression and monocyte heterogeneity but not the C-260T CD14 genotype are associated with severe acute pancreatitis. Crit Care Med. 2004;32:2457–63.

    Article  CAS  PubMed  Google Scholar 

  22. Rahman SH, Menon KV, Holmfield JH, McMahon MJ, Guillou JP. Serum macrophage migration inhibitory factor is an early marker of pancreatic necrosis in acute pancreatitis. Ann Surg. 2007;245:282–9.

    Article  PubMed  Google Scholar 

  23. Martinez FD. CD14, endotoxin, and asthma risk: actions and interactions. Proc Am Thorac Soc. 2007;4:221–5.

    Article  CAS  PubMed  Google Scholar 

  24. Liang XH, Cheung W, Heng CK, Liu JJ, Li CW, Lim B, et al. CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet Genomics. 2006;16:229–36.

    Article  PubMed  Google Scholar 

  25. Ueda T, Takeyama Y, Yasuda T, Kamei K, Satoi S, Sawa H, et al. Utility of the new Japanese severity score and indications for special therapies in acute pancreatitis. J Gastroenterol. 2009;44:453–9.

    Article  PubMed  Google Scholar 

  26. Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120:682–707.

    Article  CAS  PubMed  Google Scholar 

  27. Okazaki K, Uchida K, Fukui T. Recent advances in autoimmune pancreatitis: concept, diagnosis, and pathogenesis. J Gastroenterol. 2008;43:409–18.

    Article  CAS  PubMed  Google Scholar 

  28. Rahman SH, Ibrahim K, Larvin M, Kingsnorth A, McMahon MJ. Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis. Gastroenterology. 2004;126:1312–22.

    Article  CAS  PubMed  Google Scholar 

  29. Bhat YM, Papachristou GI, Park JS, Lamb J, Slivka A, Whitcomb DC. Functional polymorphisms of the GSTT-1 gene do not predict the severity of acute pancreatitis in the United States. Pancreatology. 2007;7:180–6.

    Article  CAS  PubMed  Google Scholar 

  30. Mahurkar S, Idris MM, Reddy DN, Bhaskar S, Rao GV, Thomas V, et al. Association of cathepsin B gene polymorphisms with tropical calcific pancreatitis. Gut. 2006;55:1270–5.

    Article  CAS  PubMed  Google Scholar 

  31. Weiss FU, Behn CO, Simon P, Ruthenbürger M, Halangk W, Lerch MM. Cathepsin B gene polymorphism Val26 is not associated with idiopathic chronic pancreatitis in European patients. Gut. 2007;56:1322–3.

    Article  CAS  PubMed  Google Scholar 

  32. Chao YC, Chu HC, Chang WK, Huang HH, Hsieh TY. CD14 promoter polymorphism in Chinese alcoholic patients with cirrhosis of liver and acute pancreatitis. World J Gastroenterol. 2005;11:6043–8.

    CAS  PubMed  Google Scholar 

  33. Zhang DL, Zheng HM, Yu BJ, Jiang ZW, Li JS. Association of polymorphisms of IL and CD14 genes with acute severe pancreatitis and septic shock. World J Gastroenterol. 2005;11:4409–13.

    CAS  PubMed  Google Scholar 

  34. Rahman SH, Salter G, Holmfield JH, Larvin M, McMahon MJ. Soluble CD14 receptor expression and monocyte heterogeneity but not the C-260T CD14 genotype are associated with severe acute pancreatitis. Crit Care Med. 2004;32:2457–63.

    Article  CAS  PubMed  Google Scholar 

  35. Tukiainen E, Kylänpää ML, Puolakkainen P, Kemppainen E, Halonen K, Orpana A, et al. Polymorphisms of the TNF, CD14, and HSPA1B genes in patients with acute alcohol-induced pancreatitis. Pancreas. 2008;37:56–61.

    Article  CAS  PubMed  Google Scholar 

  36. D’Egidio A, Schein M. Pancreatic pseudocysts: a proposed classification and its management implications. Br J Surg. 1991;78:981–4.

    Article  PubMed  Google Scholar 

  37. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–63.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao D, Sun T, Zhang X, Guo Y, Yu D, Yang M, et al. Role of CD14 promoter polymorphisms in Helicobacter pylori infection-related gastric carcinoma. Clin Cancer Res. 2007;13:2362–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tahara T, Shibata T, Hirata I, Nakano H, Arisawa T. CD14 promoter-159 polymorphism is associated with reduced risk of intestinal-type gastric cancer in a Japanese population. Dig Dis Sci. 2009;54:1508–12.

    Article  CAS  PubMed  Google Scholar 

  40. Ikebe M, Kitaura Y, Nakamura M, Tanaka H, Yamasaki A, Nagai S, et al. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol. 2009. doi:10.1002/jso.21392.

  41. Guerra S, Carla Lohman I, LeVan TD, Wright AL, Martinez FD, et al. The differential effect of genetic variation on soluble CD14 levels in human plasma and milk. Am J Reprod Immunol. 2004;52:204–11.

    Article  PubMed  Google Scholar 

  42. Inoue Y, Shimojo N, Suzuki Y, Campos Alberto EJ, Yamaide A, Suzuki S, et al. CD14 -550 C/T, which is related to the serum level of soluble CD14, is associated with the development of respiratory syncytial virus bronchiolitis in the Japanese population. J Infect Dis. 2007;195:1618–24.

    Article  CAS  PubMed  Google Scholar 

  43. Hailman E, Vasselon T, Kelley M, Busse LA, Hu MC, Lichenstein HS, et al. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol. 1998;160:1920–8.

    Google Scholar 

  44. Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. A Polymorphism in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol. 1999;20:976–83.

    CAS  PubMed  Google Scholar 

  45. Rey Nores JE, Bensussan A, Vita N, Stelter F, Arias MA, Jones M, et al. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur J Immunol. 1999;29:265–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part by a Grant-in-Aid from the Japan Society for the Promotion of Science (to A. M. and to T. S), and by the Research Committee of Intractable Pancreatic Diseases (Principal investigator: T. Shimosegawa) provided by the Ministry of Health, Labour, and Welfare of Japan. The authors are grateful to Dr. Yayoi Masamune for helpful discussion on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Masamune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masamune, A., Kume, K., Kikuta, K. et al. −651C/T promoter polymorphism in the CD14 gene is associated with severity of acute pancreatitis in Japan. J Gastroenterol 45, 225–233 (2010). https://doi.org/10.1007/s00535-009-0163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0163-2

Keywords

Navigation