Skip to main content
Log in

Adipocytokines and liver disease

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Adipose tissue is a massive source of bioactive substances known as adipocytokines, including tumor necrosis factor (TNF)-α, resistin, leptin, and adiponectin. Recent advances in medical research view obesity as a chronic low-grade inflammatory state. Hypertrophied adipocytes in obesity release chemokines that induce macrophage accumulation in adipose tissue. Accumulated macrophages in obese adipose tissue produce proinflammatory cytokines and nitric oxide, and these inflammatory changes induce adipocytokine dysregulation. The latter is characterized by a decrease in insulinsensitizing and anti-inflammatory adipocytokines, and an increase in proinflammatory adipocytokines. Adipocytokine dysregulation induces obesity-related metabolic disorders, the so-called metabolic syndrome. Metabolic syndrome is a cluster of metabolic abnormalities, including diabetes mellitus, hypertension, hyperlipidemia, and nonalcoholic steatohepatitis (NASH). Recent studies have revealed that obesity is an independent risk factor for chronic liver diseases, such as NASH, alcoholic liver disease, chronic hepatitis C, and hepatocellular carcinoma. A common mechanism underlying these hepatic clinical states is thought to be adipocytokine dysregulation. In this review, we discuss the association of adipocytokines, especially leptin, adiponectin, TNF-α, and resistin, with liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001;104:531–543.

    Article  PubMed  CAS  Google Scholar 

  2. Friedman JM. Obesity in the new millennium. Nature 2000;40:632–634.

    Google Scholar 

  3. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 1996;2:800–803.

    Article  PubMed  CAS  Google Scholar 

  4. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221:286–289.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–770.

    Article  PubMed  CAS  Google Scholar 

  6. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature 2001;409:307–312.

    Article  PubMed  CAS  Google Scholar 

  7. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes 1 1994;43:1271–1278.

    Article  CAS  Google Scholar 

  8. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 2006;83:461S–465S.

    PubMed  CAS  Google Scholar 

  9. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793–1801.

    Article  PubMed  CAS  Google Scholar 

  10. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–1808.

    PubMed  CAS  Google Scholar 

  11. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–184.

    Article  PubMed  CAS  Google Scholar 

  12. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006;580:2917–2921.

    Article  PubMed  CAS  Google Scholar 

  13. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, et al. Liver fibrosis in overweight patients. Gastroenterology 2000;118:1117–1123.

    Article  PubMed  CAS  Google Scholar 

  14. McCullough AJ, Falck-Ytter Y. Body composition and hepatic steatosis as precursors for fibrotic liver disease. Hepatology 1999;29:1328–1329.

    Article  PubMed  CAS  Google Scholar 

  15. Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis 2001;21:27–41.

    Article  PubMed  CAS  Google Scholar 

  16. Naveau S, Giraud V, Borotto E, Aubert A, Capron F, Chaput JC. Excess weight is a risk factor for alcoholic liver disease. Hepatology 1997;25:108–111.

    Article  PubMed  CAS  Google Scholar 

  17. Hourigan LF, Macdonald GA, Purdie D, Whitehall VH, Shorthouse C, Clouston A, et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 1999;29:1215–1219.

    Article  PubMed  CAS  Google Scholar 

  18. Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 2001;33:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  19. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348:1625–1638.

    Article  PubMed  Google Scholar 

  20. Wolk A, Gridley G, Svensson M, Nyren O, McLaughlin JK, Fraumeni JF, Adam HO. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 2001;12:13–21.

    Article  PubMed  CAS  Google Scholar 

  21. Crespo J, Cayon A, Fernandez-Gil P, Herandez-Guerra M, Mayorga M, Dominguez-Diez A, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75 in nonalcoholic steatohepatitis patients. Hepatology 2001;34:1158–1163.

    Article  PubMed  CAS  Google Scholar 

  22. Yalniz M, Bahcecioglu IH, Ataseven H, Ustundag B, Ilhan F, Poyrazoglu OK, et al. Serum adipokine and ghrelin levels in nonalcoholic steatohepatitis. Mediators Inflamm 2006;2006:34295.

    Article  PubMed  CAS  Google Scholar 

  23. Chitturi S, Farrell G, Frost L, Kriketos A, Lin R, Fung C, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology 2002;36:403–409.

    Article  PubMed  CAS  Google Scholar 

  24. Pagano C, Soardo G, Pilon C, Milocco C, Basan L, Milan G, et al. Increased serum resistin in nonalcoholic fatty liver disease is related to liver disease severity and not to insulin resistance. J Endocrinol Metab 2006;91:1081–1086.

    Article  CAS  Google Scholar 

  25. Hui JM, Hodge A, Frost L et al. Beyond insulin resistance in NASH: TNFα or adiponectin? Hepatology 2004;40:46–54.

    Article  PubMed  CAS  Google Scholar 

  26. Jarrar MH, Baranova A, Collantes R, Stepanova M, Bennett C, Fang Y, et al. Adipokines and cytokines in non-alcoholic fatty liver disease (NAFLD). Aliment Pharmacol Ther 2008;27:412–421.

    PubMed  CAS  Google Scholar 

  27. Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons-Romero F, et al. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 2005;54:117–121.

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu A, Takamura T, Matsuzawa N, Nakamura S, Nabemoto S, Takeshita Y, et al. Regulation of adiponectin receptor expression in human liver and a hepatocyte cell line. Metabolism 2007;56:1478–1485.

    Article  PubMed  CAS  Google Scholar 

  29. Musso G, Gambino R, Biroli G, Carello M, Faga E, Pacini G, et al. Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis. Am J Gastroenterol 2005;100:2438–2446.

    Article  PubMed  CAS  Google Scholar 

  30. Testa R, Franceschini R, Giannini E, Cataldi A, Botta F, Fasoli A, et al. Serum leptin levels in patients with viral chronic hepatitis or liver cirrhosis. J Hepatol 2000;33:33–37.

    Article  PubMed  CAS  Google Scholar 

  31. Jonsson JR, Moschen AR, Hickman IJ, Richardson MM, Kaser S, Clouston AD, et al. Adiponectin and its receptors in patients with chronic hepatitis C. J Hepatol 2005;43:929–936.

    Article  PubMed  CAS  Google Scholar 

  32. Petit JM, Minello A, Jooste V, Bour JB, Galland F, Duvillard L, et al. Decreased plasma adiponectin concentrations are closely related to steatosis in hepatitis C virus-infected patients. J Clin Endocrinol Metab 2005;90:2240–2243.

    Article  PubMed  CAS  Google Scholar 

  33. Zografos TA, Liaskos C, Rigopoulou EI, Togousidis E, Makaritsis K, Germenis A, Dalekos GN. Adiponectin: a new independent predictor of liver steatosis and response to IFN-alpha treatment in chronic hepatitis C. Am J Gastroenterol 2008;3:605–614.

    Article  CAS  Google Scholar 

  34. Wang YY, Lin SY. Leptin in relation to hepatocellular carcinoma in patients with liver cirrhosis. Horm Res 2003;60:185–190.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    Article  PubMed  CAS  Google Scholar 

  36. Muoio DM, Lynis Dohm G. Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab 2002;16:653–666.

    Article  PubMed  CAS  Google Scholar 

  37. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997;100:270–278.

    Article  PubMed  CAS  Google Scholar 

  38. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;26:903–908.

    Google Scholar 

  39. Havel PJ, Kasim-Karakas S, Dubuc GR, Mueller W, Phinney SD. Gender differences in plasma leptin concentrations. Nat Med 1996;2:949–950.

    Article  PubMed  CAS  Google Scholar 

  40. Sandhofer A, Laimer M, Ebenbichler CF, Kaser S, Paulweber B, Patsch JR. Soluble leptin receptor and soluble receptor-bound fraction of leptin in the metabolic syndrome. Obes Res 2003;11:760–768.

    Article  PubMed  CAS  Google Scholar 

  41. Yang G, Ge H, Boucher A, Yu X, Li C. Modulation of direct leptin signaling by soluble leptin receptor. Mol Endocrinol 2004;18:1354–1362.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity. Physiol Behav 2006;88:249–256.

    Article  PubMed  CAS  Google Scholar 

  43. Brabant G, Muller G, Horn R, Anderwald C, Roden M, Nave H. Hepatic leptin signaling in obesity. FASEB J 2005;19:1048–1050.

    PubMed  CAS  Google Scholar 

  44. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007;5:181–194.

    Article  PubMed  CAS  Google Scholar 

  45. Kakuma T, Lee Y, Higa M, Wang Z, Pan W, Shimomura I, et al. Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc Natl Acad Sci USA 2000;97:8536–8541.

    Article  PubMed  CAS  Google Scholar 

  46. Javor ED, Ghany MG, Cochran EK, Oral EA, DePaoli AM, Premkumar A, et al. Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology 2005;41:753–760.

    Article  PubMed  CAS  Google Scholar 

  47. Ikejima K, Honda H, Yoshikawa M, Hirose M, Kitamura T, Takei Y, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology 2001;34:288–297.

    Article  PubMed  CAS  Google Scholar 

  48. Cao Q, Mak KM, Ren C, Lieber CS. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem 2004;279:4292–4304.

    Article  PubMed  CAS  Google Scholar 

  49. Saxena NK, Titus MA, Ding X, Floyd J, Srinivasan S, Sitaraman SV, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J 2004;18:1612–1614.

    PubMed  CAS  Google Scholar 

  50. Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology 2002;122:1399–1410.

    Article  PubMed  CAS  Google Scholar 

  51. Angulo P, Alba LM, Petrovic LM, Adams LA, Lindor KD, Jensen MD. Leptin, insulin resistance, and liver fibrosis in human nonalcoholic fatty liver disease. J Hepatol 2004;41:943–949.

    Article  PubMed  CAS  Google Scholar 

  52. Chalasani N, Crabb DW, Cummings OW, Kwo PY, Asghar A, Pandya PK, et al. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am J Gastroenterol 2003;98:2771–2776.

    Article  PubMed  CAS  Google Scholar 

  53. Liu ZW, Zhang N, Han QY, Zeng JT, Chu YL, Qiu JM, et al. Correlation of serum leptin levels with anthropometric and metabolic parameters and biochemical liver function in Chinese patients with chronic hepatitis C virus infection. World J Gastroenterol 2005;11:3357–3362.

    PubMed  CAS  Google Scholar 

  54. Crespo J, Rivero M, Fabrega E, Cayon A, Amando JA, Garcia-Unzeta MT, et al. Plasma leptin and TNF-alpha levels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig Dis Sci 2002;47:1604–1610.

    Article  PubMed  CAS  Google Scholar 

  55. Romero-Gomez M, Castellano-Megias VM, Grande L, Irles JA, Cruz M, Nogales MC, et al. Serum leptin levels correlate with hepatic steatosis in chronic hepatitis C. Am J Gastroenterol 2003;98:1135–1141.

    PubMed  CAS  Google Scholar 

  56. Giannini E, Ceppa P, Botta F, Mastracci L, Romagnoli P, Comino I, et al. Leptin has no role in determining severity of steatosis and fibrosis in patients with chronic hepatitis C. Am J Gastroenterol 2000;95:3211–3217.

    Article  PubMed  CAS  Google Scholar 

  57. Moller H, Mellemgaard A, Lindvig K, Olsen J. Obesity and cancer risk: a Danish record-linkage study. Eur J Cancer 1994;30A:344–350.

    Article  PubMed  CAS  Google Scholar 

  58. Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 2007;67:2497–2507.

    Article  PubMed  CAS  Google Scholar 

  59. Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006;44:983–991.

    Article  PubMed  CAS  Google Scholar 

  60. Yokota T, Meka CS, Medina KL, Igarashi H, Comp PC, Takahashi M, et al. Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest 2002;109:1303–1310.

    PubMed  CAS  Google Scholar 

  61. Corbetta S, Bulfamante G, Cortelazzi D, Barresi V, Cetin I, Mantovani G, et al. Adiponectin expression in human fetal tissues during mid-and late gestation. J Clin Endocrinol Metab 2005;90:2397–2402.

    Article  PubMed  CAS  Google Scholar 

  62. Pineiro R, Iglesias MJ, Gallego R, Raghay K, Eiras S, Rubio J, et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett 2005;26:5163–5169.

    Article  CAS  Google Scholar 

  63. Wolf AM, Wolf D, Avila MA, Moschen AR, Berasain C, Enrich B, et al. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol 2006;44:537–543.

    Article  PubMed  CAS  Google Scholar 

  64. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003;278:9073–9085.

    Article  PubMed  CAS  Google Scholar 

  65. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 2003;278:40352–40363.

    Article  PubMed  CAS  Google Scholar 

  66. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79–83.

    Article  PubMed  CAS  Google Scholar 

  67. Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J Biol Chem 2002;277:29359–29362.

    Article  PubMed  CAS  Google Scholar 

  68. Wang Y, Lam KS, Chan L, Chan KW, Lam JB, Lam MC, et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem 2006;281:16391–16400.

    Article  PubMed  CAS  Google Scholar 

  69. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98:2005–2010.

    Article  PubMed  CAS  Google Scholar 

  70. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595–1599.

    PubMed  CAS  Google Scholar 

  71. Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003;42:231–234.

    Article  PubMed  CAS  Google Scholar 

  72. Ouchi N, Kihara S, Adrita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:1296–1301.

    Google Scholar 

  73. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752–1761.

    PubMed  CAS  Google Scholar 

  74. Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 2002;51:2325–2328.

    Article  PubMed  CAS  Google Scholar 

  75. Ohashi K, Ouchi N, Kihara S, Funahashi T, Nakamura T, Sumitsuji S, et al. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol 2004;43:1195–1200.

    Article  PubMed  CAS  Google Scholar 

  76. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:762–769.

    Article  PubMed  CAS  Google Scholar 

  77. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006;116:1784–1792.

    Article  PubMed  CAS  Google Scholar 

  78. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007;33:332–339.

    Article  CAS  Google Scholar 

  79. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004;279:30817–30822.

    Article  PubMed  CAS  Google Scholar 

  80. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 2004;101:10308–10313.

    Article  PubMed  CAS  Google Scholar 

  81. Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 2002;123:134–140.

    Article  PubMed  Google Scholar 

  82. Brunt EM. Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 2001;21:3–16.

    Article  PubMed  CAS  Google Scholar 

  83. Kamada Y, Matsumoto H, Tamura S, Fukushima J, Kiso S, Fukui K, et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J Hepatol 2007;47:556–564.

    Article  PubMed  CAS  Google Scholar 

  84. Koteish A, Diehl AM. Animal model. Semin Liver Dis 2001;21:89–104.

    Article  PubMed  CAS  Google Scholar 

  85. Shklyaev S, Aslanidi G, Tennant M, Prima V, Kohlbrenner E, Kroutov V, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci USA 2003;100:14217–14222.

    Article  PubMed  CAS  Google Scholar 

  86. Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver disease in mice. J Clin Invest 2003;112:91–100.

    PubMed  CAS  Google Scholar 

  87. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000;102:1296–1301.

    PubMed  CAS  Google Scholar 

  88. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003;107:671–674.

    Article  PubMed  CAS  Google Scholar 

  89. Matsubara M, Namioka K, Katayose S. Decreased plasma adiponectin concentrations in women with low-grade C-reactive protein elevation. Eur J Endocrinol 2003;148:657–662.

    Article  PubMed  CAS  Google Scholar 

  90. Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002;105:564–569.

    Article  PubMed  Google Scholar 

  91. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001;48:206–211.

    Article  PubMed  CAS  Google Scholar 

  92. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003;37:343–350.

    Article  PubMed  CAS  Google Scholar 

  93. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 1997;94:2557–2562.

    Article  PubMed  CAS  Google Scholar 

  94. Matsumoto H, Tamura S, Kamada Y, Kiso S, Fukushima J, Wada A, et al. Adiponectin deficiency exacerbates lipopolysaccharide/ D-galactosamine-induced liver injury in mice. World J Gastroenterol 2006;12:3352–3358.

    PubMed  CAS  Google Scholar 

  95. Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M, et al. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004;40:177–184.

    Article  PubMed  CAS  Google Scholar 

  96. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000;96:1723–1732.

    PubMed  CAS  Google Scholar 

  97. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 2004;323:630–635.

    Article  PubMed  CAS  Google Scholar 

  98. Anania FA. Adiponectin and alcoholic fatty liver: is it, after all, about what you eat? Hepatology 2005;42:530–532.

    Article  PubMed  Google Scholar 

  99. Sennello JA, Fayad R, Morris AM, Eckel RH, Asilmaz E, Montez J, et al. Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin. Endocrinology 2005;146:2157–2164.

    Article  PubMed  CAS  Google Scholar 

  100. Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest 2007;117:375–386.

    Article  PubMed  CAS  Google Scholar 

  101. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 2002;169:3978–3986.

    PubMed  CAS  Google Scholar 

  102. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004;114:147–152.

    PubMed  CAS  Google Scholar 

  103. Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 2004;315:264–271.

    Article  PubMed  CAS  Google Scholar 

  104. Neumeier M, Weigert J, Schaffler A, Weiss TS, Schmidl C, Buttner R, et al. Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun 2006;350:731–735.

    Article  PubMed  CAS  Google Scholar 

  105. Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ J 2006;70:1437–1442.

    Article  PubMed  CAS  Google Scholar 

  106. Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997;77:517–544.

    PubMed  CAS  Google Scholar 

  107. Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Liddle C. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 1998;27:128–133.

    Article  PubMed  CAS  Google Scholar 

  108. Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 1996;111:1645–1653.

    Article  PubMed  CAS  Google Scholar 

  109. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000;105:1067–1075.

    Article  PubMed  CAS  Google Scholar 

  110. Tomita K, Tamiya G, Ando S, Kitamura N, Koizumi H, Kato S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of nonalcoholic steatohepatitis in mice. Gut 2006;55:415–424.

    Article  PubMed  CAS  Google Scholar 

  111. Koppe SW, Sahai A, Malladi P, Whitington PF, Green RM. Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet. J Hepatol 2004;41:592–598.

    Article  PubMed  CAS  Google Scholar 

  112. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003;125:1796–1807.

    Article  PubMed  CAS  Google Scholar 

  113. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 2005;166:1655–1669.

    PubMed  CAS  Google Scholar 

  114. Caligiuri A, Bertolani C, Guerra CT, Aleffi S, Galastri S, Trappoliere M, et al. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology 2008;47:668–676.

    Article  PubMed  CAS  Google Scholar 

  115. Adachi M, Brenner DA. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 2008;47:677–685.

    Article  PubMed  CAS  Google Scholar 

  116. Pagano C, Soardo G, Esposito W, Fallo F, Basan L, Donnini D, et al. Plasma adiponectin is decreased in nonalcoholic fatty liver disease. Eur J Endocrinol 2005;152:13–18.

    Article  CAS  Google Scholar 

  117. Siagris D, Vafiadis G, Michalaki M, Lekkou A, Starakis I, Makri M, et al. Serum adiponectin in chronic hepatitis C and B. J Viral Hepat 2007;14:577–583.

    Article  PubMed  CAS  Google Scholar 

  118. Bach N, Thung SN, Schaffner F. The histological features of chronic hepatitis C and autoimmune chronic hepatitis: a comparative analysis. Hepatology 1992;15:572–577.

    Article  PubMed  CAS  Google Scholar 

  119. Goodman ZD, Ishak KG. Histopathology of hepatitis C virus infection. Semin Liver Dis 1995;15:70–81.

    Article  PubMed  CAS  Google Scholar 

  120. Castera L, Hezode C, Roudot-Thoraval F, Bastie A, Zafrani ES, Pawlotsky JM, et al. Worsening of steatosis is an independent factor of fibrosis progression in untreated patients with chronic hepatitis C and paired liver biopsies. Gut 2002;52:288–292.

    Article  Google Scholar 

  121. Ohata K, Hamasaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K, et al. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 2003;97:3036–3043.

    Article  PubMed  Google Scholar 

  122. Tietge UJ, Boker KH, Manns MP, Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am J Physiol Endocrinol Metab 2004;287:E82–E89.

    Article  PubMed  CAS  Google Scholar 

  123. Tacke F, Wustefeld T, Horn R, Luedde T, Srinivas Rao A, Manns MP, et al. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J Hepatol 2005;42:666–673.

    Article  PubMed  CAS  Google Scholar 

  124. Housa D, Housova J, Vernerova Z, Haluzik M. Adipocytokines and cancer. Physiol Res 2006;55:233–244.

    PubMed  CAS  Google Scholar 

  125. Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, et al. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 2005;11:3642–3646.

    Article  PubMed  CAS  Google Scholar 

  126. Wei E, Giovannucci E, Fuchs C, Willett W, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst 2005;97:1688–1694.

    Article  PubMed  CAS  Google Scholar 

  127. Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H. Plasma adiponectin and gastric cancer. Clin Cancer Res 2005;11:466–472.

    Article  PubMed  CAS  Google Scholar 

  128. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology 2005;65:1168–1172.

    Article  PubMed  Google Scholar 

  129. Petridou E, Mantzoros C, Dessypris N, Koukoulomatis P, Addy C, Voulgaris Z, et al. Plasma adiponectin concentrations in relation to endometrial cancer: a case-control study in Greece. J Clin Endocrinol Metab 2003;88:993–997.

    Article  PubMed  CAS  Google Scholar 

  130. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab 2004;89:1102–1107.

    Article  PubMed  CAS  Google Scholar 

  131. Miyazaki T, Bub JD, Uzuki M, Iwamoto Y. Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3. Biochem Biophys Res Commun 2005;333:79–87.

    Article  PubMed  CAS  Google Scholar 

  132. Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 2006;66:11462–11470.

    Article  PubMed  CAS  Google Scholar 

  133. Konturek PC, Burnat G, Rau T, Hahn EG, Konturek S. Effect of adiponectin and ghrelin on apoptosis of Barrett adenocarcinoma cell line. Dig Dis Sci 2008;53:597–605.

    Article  PubMed  CAS  Google Scholar 

  134. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001;50:2094–2099.

    Article  PubMed  CAS  Google Scholar 

  135. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003;52:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  136. Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vasc Biol 2007;27:635–641.

    Article  PubMed  CAS  Google Scholar 

  137. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesityrelated inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 2005;54:3358–3370.

    Article  PubMed  CAS  Google Scholar 

  138. Tonelli J, Li W, Kishore P, Pajvani UB, Kwon E, Weaver C, et al. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes 2004;53:1621–1629.

    Article  PubMed  CAS  Google Scholar 

  139. Furuhashi M, Ura N, Higashiura K, Murakami H, Tanaka M, Moniwa N, et al. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 2003;42:76–81.

    Article  PubMed  CAS  Google Scholar 

  140. Koh KK, Quon MJ, Han SH, Chung WJ, Ahn JY, Seo YH, et al. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 2004;110:3687–3692.

    Article  PubMed  CAS  Google Scholar 

  141. Nagasawa A, Fukui K, Kojima M, Kishida K, Maeda N, Nagaretani H, et al. Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun 2003;311:909–914.

    Article  PubMed  CAS  Google Scholar 

  142. Nagao K, Inoue N, Wang YM, Yanagita T. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochem Biophys Res Commun 2003;310:562–566.

    Article  PubMed  CAS  Google Scholar 

  143. Shimada K, Kawarabayashi T, Tanaka A, Fukuda D, Nakamura Y, Yoshiyama M, et al. Oolong tea increases plasma adiponectin levels and low-density lipoprotein particle size in patients with coronary artery disease. Diabetes Res Clin Pract 2004;65:227–234.

    Article  PubMed  CAS  Google Scholar 

  144. Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 2005;17:171–180.

    Article  PubMed  CAS  Google Scholar 

  145. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87–91.

    Article  PubMed  CAS  Google Scholar 

  146. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005;25:2062–2068.

    Article  PubMed  CAS  Google Scholar 

  147. Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007;27:84–91.

    Article  PubMed  CAS  Google Scholar 

  148. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  149. Manco M, Marcellini M, Giannone G, Nobili V. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am J Clin Pathol 2007;127:954–960.

    Article  PubMed  CAS  Google Scholar 

  150. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol 2007;46:1104–1110.

    Article  PubMed  CAS  Google Scholar 

  151. Satapathy SK, Garg S, Chauhan R, Sakhuja P, Malhotra V, Sharma BC, et al. Beneficial effects of tumor necrosis factoralpha inhibition by pentoxifylline on clinical, biochemical, and metabolic parameters of patients with nonalcoholic steatohepatitis. Am J Gastroenterol 2004;99:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  152. Adams LA, Zein CO, Angulo P, Lindor KD. A pilot trial of pentoxifylline in nonalcoholic steatohepatitis. Am J Gastroenterol 2004;99:2365–2368.

    Article  PubMed  CAS  Google Scholar 

  153. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhhoades B, Qi Y, et al. Regulation of fasted blood glucose by resistin. Science 2004;303:1195–1198.

    Article  PubMed  CAS  Google Scholar 

  154. Sato K, Kobayashi K, Inoguchi T, Sonoda N, Imamura M, Sekiguchi N, et al. Adenovirus-mediated high expression of resistin causes dyslipidemia in mice. Endocrinology 2005;146:273–279.

    Article  PubMed  CAS  Google Scholar 

  155. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001;50:2199–2202.

    Article  PubMed  CAS  Google Scholar 

  156. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006;49:744–747.

    Article  PubMed  CAS  Google Scholar 

  157. Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004;50:1511–1525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamada, Y., Takehara, T. & Hayashi, N. Adipocytokines and liver disease. J Gastroenterol 43, 811–822 (2008). https://doi.org/10.1007/s00535-008-2213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2213-6

Key words

Navigation