Journal of Gastroenterology

, Volume 41, Issue 3, pp 198–208 | Cite as

Role of pancreatic trypsin in chronic esophagitis induced by gastroduodenal reflux in rats

  • Yuji Naito
  • Kazuhiko Uchiyama
  • Masaaki Kuroda
  • Tomohisa Takagi
  • Satoshi Kokura
  • Norimasa Yoshida
  • Hiroshi Ichikawa
  • Toshikazu Yoshikawa



Reflux of the duodenal contents with gastric acid has been reported to contribute to the development of esophageal mucosal damage and inflammation. Recent studies show that pancreatic trypsin can stimulate the production of inflammatory mediators, including chemokines and prostaglandins from human esophageal epithelial cells in vitro. The aim of the present study was to investigate the role of pancreatic trypsin in the pathogenesis of chronic esophageal inflammation induced by gastroduodenal reflux in rats.


Esophagogastroduodenal anastomosis was carried out in male Wistar rats by anastomosing the jejunum to the gastroesophageal junction under diethyl ether inhalation anesthesia. The animals undergoing surgery were treated with the control diet, rabeprazole sodium, nizatidine, ecabet sodium, camostat mesilate (CMM), ONO-1714, a specific inducible nitric oxide synthase (iNOS) inhibitor, or meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor. Esophageal injury was evaluated by macroscopic and microscopic findings, and mRNA expression for CINC-1, COX-2, and iNOS was determined by real-time polymerase chain reaction (PCR). Trypsin activity within the esophageal lumen was measured 2 weeks after surgery, and the expression of protease-activated receptor (PAR)-1 and -2 was confirmed by reverse transcription (RT)-PCR.


At 8 weeks after surgery, gastroduodenal reflux induced esophageal erosions and ulcer formation as well as marked thickening of the esophageal wall. Histological study showed an increase of thickness of the esopha-geal mucosa, hyperplasia of the epidermis and basal cells, ulcer formation, and marked infiltration of inflammatory cells. The macroscopic ulcer score and histological ulcer length were significantly reduced by treatment with rabeprazole or CMM but not by nizatidine or ecabet sodium, compared with each control. Rabeprazole, nizatidine, or ecabet sodium did not affect the severity of mucosal hyperplastic scores or histological parameters in esophagitis. In contrast, the CMM group showed a significant decrease in the mucosal hyperplastic and inflammatory scores. The enhanced expression of CINC-1, COX-2, and iNOS mRNA in the control group was also markedly inhibited in the CMM-treated group. ONO-1714 or meloxicam treatment significantly reduced the macroscopic scores of ulcer and hyperplasia. The trypsin activity in the esophageal lumen was significantly increased in the control diet group, and this increase was significantly inhibited in the CMM-treated group. The expression of PAR-1 and -2 mRNA was confirmed in rat esophageal epithelium.


With this model, we have demonstrated that CMM significantly reduces inflammation and hyperplasia in the esophageal mucosa. These results indicate that trypsin, which is primarily inhibited by CMM, plays an important role in the mucosal damage induced by gastroduodenal reflux and that it can be a therapeutic target in patients with gastroduodenal reflux esophagitis.

Key words

esophagitis pancreatic protease trypsin camostat mesilate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiba, N 1997Proton pump inhibitors in acute healing and maintenance of erosive or worse esophagitis: a systematic overviewCan J Gastroenterol11 Suppl B66B73BPubMedGoogle Scholar
  2. 2.
    Robinson, M, Lanza, F, Avner, D, Haber, M 1996Effective maintenance treatment of reflux esophagitis with low-dose lansoprazole. A randomized, double-blind, placebo-controlled trialAnn Intern Med12485967PubMedGoogle Scholar
  3. 3.
    Escourrou, J, Deprez, P, Saggioro, A, Geldof, H, Fischer, R, Maier, C 1999Maintenance therapy with pantoprazole 20 mg prevents relapse of reflux oesophagitisAliment Pharmacol Ther13148191CrossRefPubMedGoogle Scholar
  4. 4.
    Fitzgerald, R, Onwuegbusi, B, Bajaj-Elliott, M, Saeed, I 2002Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinantsGut504519CrossRefPubMedGoogle Scholar
  5. 5.
    Isomoto, H, Wang, A, Mizuta, Y, Akazawa, Y 2003Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitisAm J Gastroenterol985516CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshida, N, Uchiyama, K, Kuroda, M, Sakuma, K, Kokura, S, Ichikawa, H,  et al. 2004Interleukin-8 expression in the esophageal mucosa of patients with gastroesophageal reflux diseaseScand J Gastroenterol3981622CrossRefPubMedGoogle Scholar
  7. 7.
    Kauer, WK, Peters, JH, DeMeester, TR, Ireland, AP, Bremner, CG, Hagen, JA 1995Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasizedAnn Surg22252531discussion 31–3PubMedCrossRefGoogle Scholar
  8. 8.
    Gillen, P, Keeling, P, Byrne, PJ, Healy, M, O’Moore, RR, Hennessy, TP 1988Implication of duodenogastric reflux in the pathogenesis of Barrett's oesophagusBr J Surg755403PubMedGoogle Scholar
  9. 9.
    Mud, HJ, Kranendonk, SE, Obertop, H, Van Houten, H, Westbroek, DL 1982Active trypsin and reflux oesophagitis: an experimental study in ratsBr J Surg6926972PubMedGoogle Scholar
  10. 10.
    Salo, JA, Kivilaakso, E 1984Contribution of trypsin and cholate to the pathogenesis of experimental alkaline reflux esophagitisScand J Gastroenterol1987581PubMedGoogle Scholar
  11. 11.
    Johnson, LF, Harmon, JW 1986Experimental esophagitis in a rabbit model. Clinical relevanceJ Clin Gastroenterol8 Suppl 12644PubMedCrossRefGoogle Scholar
  12. 12.
    Asokananthan, N, Graham, PT, Fink, J, Knight, DA, Bakker, AJ, McWilliam, AS,  et al. 2002Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cellsJ Immunol168357785PubMedGoogle Scholar
  13. 13.
    Kawabe, A, Shimada, Y, Soma, T, Maeda, M, Itami, A, Kaganoi, J,  et al. 2004Production of prostaglandin E2 via bile acid is enhanced by trypsin and acid in normal human esophageal epithelial cellsLife Sci752134CrossRefPubMedGoogle Scholar
  14. 14.
    Tamura, Y, Hirado, M, Okamura, K, Minato, Y, Fujii, S 1977Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1 esteraseBiochim Biophys Acta48441722PubMedGoogle Scholar
  15. 15.
    Imada, T, Chen, C, Hatori, S, Shiozawa, M, Rino, Y 1999Effect of trypsin inhibitor on reflux oesophagitis after total gastrectomy in ratsEur J Surg165104550CrossRefPubMedGoogle Scholar
  16. 16.
    Sasaki, I 1989Effect of camostat in the treatment of reflux esophagitis after gastrectomy: an experimental study in rats and a pilot clinical studyBiomed Res1016773Google Scholar
  17. 17.
    Oh, TY, Lee, JS, Ahn, BO, Cho, H, Kim, WB, Kim, YB,  et al. 2001Oxidative damages are critical in pathogenesis of reflux esophagitis: implication of antioxidants in its treatmentFree Radic Biol Med3090515CrossRefPubMedGoogle Scholar
  18. 18.
    Oh, TY, Lee, JS, Ahn, BO, Cho, H, Kim, WB, Kim, YB,  et al. 2001Oxidative stress is more important than acid in the pathogenesis of reflux oesophagitis in ratsGut4936471CrossRefPubMedGoogle Scholar
  19. 19.
    Ismail-Beigi, F, Horton, PF, Pope, CE,2nd 1970Histological consequences of gastroesophageal reflux in manGastroenterology5816374PubMedGoogle Scholar
  20. 20.
    Chomczynski, P, Sacchi, N 1987Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extractionAnal Biochem1621569CrossRefPubMedGoogle Scholar
  21. 21.
    Kawabata, S, Miura, T, Morita, T, Kato, H, Fujikawa, K, Iwanaga, S,  et al. 1988Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsinEur J Biochem1721725CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, F, Altorki, NK, Wu, YC, Soslow, RA, Subbaramaiah, K, Dannenberg, AJ 2001Duodenal reflux induces cyclooxygenase-2 in the esophageal mucosa of rats: evidence for involvement of bile acidsGastroenterology12113919CrossRefPubMedGoogle Scholar
  23. 23.
    Kawai, T, Ikeda, H, Harada, Y, Saitou, T 1992Changes in the rat stomach after long-term administration of proton pump inhibitors (AG-1749 and E-3810)Nippon Rinsho5018893PubMedGoogle Scholar
  24. 24.
    Lin, TM, Evans, DC, Warrick, MW, Pioch, RP 1986Actions of nizatidine, a selective histamine H2-receptor antagonist, on gastric acid secretion in dogs, rats and frogsJ Pharmacol Exp Ther23940610PubMedGoogle Scholar
  25. 25.
    Ito, Y, Nakamura, S, Onoda, Y, Sugawara, Y, Takaiti, O 1993Effects of the new anti-ulcer drug ecabet sodium (TA-2711) on pepsin activity. I. Inactivation of enzyme proteinJpn J Pharmacol6216974PubMedGoogle Scholar
  26. 26.
    Hamaguchi, M, Fujiwara, Y, Takashima, T, Hayakawa, T, Sasaki, E, Shiba, M,  et al. 2003Increased expression of cytokines and adhesion molecules in rat chronic esophagitisDigestion6818997CrossRefPubMedGoogle Scholar
  27. 27.
    Omura, N, Kashiwagi, H, Chen, G, Yano, F, Suzuki, Y, Aoki, T 2000Effects of ecabet sodium on experimentally induced reflux esophagitisJ Gastroenterol355049CrossRefPubMedGoogle Scholar
  28. 28.
    Bohm, SK, Khitin, LM, Grady, EF, Aponte, G, Payan, DG, Bunnett, NW 1996Mechanisms of desensitization and resensitization of proteinase-activated receptor-2J Biol Chem2712200316CrossRefPubMedGoogle Scholar
  29. 29.
    Cenac, N, Coelho, AM, Nguyen, C, Compton, S, Andrade-Gordon, P, MacNaughton, WK,  et al. 2002Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2Am J Pathol161190315PubMedGoogle Scholar
  30. 30.
    Nguyen, TD, Moody, MW, Steinhoff, M, Okolo, C, Koh, DS, Bunnett, NW 1999Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2J Clin Invest1032619PubMedCrossRefGoogle Scholar
  31. 31.
    Olejar, T, Matej, R, Zadinova, M, Pouckova, P 2001Expression of proteinase-activated receptor 2 during taurocholate-induced acute pancreatic lesion development in Wistar ratsInt J Gastrointest Cancer3011321CrossRefPubMedGoogle Scholar
  32. 32.
    Yoshida, N, Katada, K, Kuroda, M, Shimozawa, M, Uchiyama, K, Naito, Y,  et al. 2004Trypsin activates human esophageal epithelial cells to produce inflammatory cytokines through protease-activated receptor 2Gastroenterology126A-501Google Scholar
  33. 33.
    Watanabe, K, Iida, M, Takaishi, K, Suzuki, T, Hamada, Y, Iizuka, Y,  et al. 1993Chemoattractants for neutrophils in lipopolysaccharide-induced inflammatory exudate from rats are not interleukin-8 counterparts but gro-gene-product/melanoma-growth-stimulating-activity-related factorsEur J Biochem21426770CrossRefPubMedGoogle Scholar
  34. 34.
    Suzuki, H, Suematsu, M, Miura, S, Liu, YY, Watanabe, K, Miyasaka, M,  et al. 1994Rat CINC/gro: a novel mediator for locomotive and secretagogue activation of neutrophils in vivoJ Leukoc Biol556527PubMedGoogle Scholar
  35. 35.
    Imamoto, E, Yoshida, N, Uchiyama, K, Higashihara, H, Tomatsuri, N, Ueda, M,  et al. 2003Effects of bile acids and acidic exposure on IL-8 expression in human esophageal epithelial cellsGastroenterology124A-409Google Scholar
  36. 36.
    Naito, Y, Yoshikawa, T 2002Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stressFree Radic Biol Med3332336CrossRefPubMedGoogle Scholar
  37. 37.
    Wilson, KT, Fu, S, Ramanujam, KS, Meltzer, SJ 1998Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomasCancer Res58292934PubMedGoogle Scholar
  38. 38.
    Thun, MJ 2003NSAIDs and esophageal cancer: ready for trials but not yet broad clinical applicationGastroenterology1242468CrossRefPubMedGoogle Scholar
  39. 39.
    Kaur, BS, Khamnehei, N, Iravani, M, Namburu, SS, Lin, O, Triadafilopoulos, G 2002Rofecoxib inhibits cyclooxygenase 2 expression and activity and reduces cell proliferation in Barrett's esophagusGastroenterology123607CrossRefPubMedGoogle Scholar
  40. 40.
    Houliston, RA, Keogh, RJ, Sugden, D, Dudhia, J, Carter, TD, Wheeler-Jones, CP 2002Protease-activated receptors upregulate cyclooxygenase-2 expression in human endothelial cellsThromb Haemost883218PubMedGoogle Scholar
  41. 41.
    Frungieri, MB, Weidinger, S, Meineke, V, Kohn, FM, Mayerhofer, A 2002Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: possible relevance to human fibrotic disordersProc Natl Acad Sci U S A99150727CrossRefPubMedGoogle Scholar
  42. 42.
    Yada, K, Shibata, K, Matsumoto, T, Ohta, M, Yokoyama, S, Kitano, S 2005Protease-activated receptor-2 regulates cell proliferation and enhances cyclooxygenase-2 mRNA expression in human pancreatic cancer cellsJ Surg Oncol897985CrossRefPubMedGoogle Scholar
  43. 43.
    Nehra, D, Howell, P, Williams, CP, Pye, JK, Beynon, J 1999Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidityGut44598602PubMedCrossRefGoogle Scholar
  44. 44.
    Gotley, DC, Morgan, AP, Ball, D, Owen, RW, Cooper, MJ 1991Composition of gastro-oesophageal refluxateGut3210939PubMedGoogle Scholar
  45. 45.
    Salmo, JA, Lehto, VP, Myllarniemi, HS, Kivilaakso, EO 1990Morphological alterations in tryptic esophagitis: an experimental light microscopic and scanning and transmission electron microscopic study in rabbitsJ Surg Res49147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Yuji Naito
    • 1
  • Kazuhiko Uchiyama
    • 2
  • Masaaki Kuroda
    • 2
  • Tomohisa Takagi
    • 3
  • Satoshi Kokura
    • 3
  • Norimasa Yoshida
    • 4
  • Hiroshi Ichikawa
    • 5
  • Toshikazu Yoshikawa
    • 1
    • 2
    • 3
  1. 1.Department of Medical ProteomicsKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Inflammation and Immunology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  3. 3.Department of Biomedical Safety ScienceKyoto Prefectural University of MedicineKyotoJapan
  4. 4.Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  5. 5.Department of Food Sciences and Nutritional Health, The Faculty of Human EnvironmentKyoto Prefectural UniversityKyotoJapan

Personalised recommendations