Skip to main content
Log in

Etiology of biliary atresia as a developmental anomaly: recent advances

  • Topics
  • Recent advances in pediatric hepatobiliary surgery
  • Published:
Journal of Hepato-Biliary-Pancreatic Sciences

Abstract

Biliary atresia (BA) is a progressive fibro-obliterative cholangiopathy affecting the extra- and intrahepatic biliary tree to various degrees and resulting in obstructive bile flow, cholestasis and icterus in neonates. It is the most common cause of pediatric liver transplantation. The etiology of BA is still unclear, although there is some evidence pointing to viral, toxic, and multiple genetic factors. For new therapeutic options other than liver transplantation to be developed, a greater understanding of the pathogenesis of BA is indispensable. The fact that the pathology of BA develops during a period of biliary growth and remodeling suggests an involvement of developmental anomalies. Recent studies indicate an association of the etiology of BA with some genetic factors such as laterality genes, epigenetic regulation and/or microRNA function. In this paper, we present an overview of recent advances in the understanding of the disease focusing on bile duct developmental anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009;374(9702):1704–13.

    Article  PubMed  Google Scholar 

  2. Bassett MD, Murray KF. Biliary atresia: recent progress. J Clin Gastroenterol. 2008;42(6):720–9.

    Article  PubMed  Google Scholar 

  3. Pakarinen MP, Rintala RJ. Surgery of biliary atresia. Scand J Surg. 2011;100(1):49–53.

    PubMed  CAS  Google Scholar 

  4. Hsiao CH, Chang MH, Chen HL, Lee HC, Wu TC, Lin CC, et al. Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology. 2008;47(4):1233–40.

    Article  PubMed  Google Scholar 

  5. Muraji T, Suskind DL, Irie N. Biliary atresia: a new immunological insight into etiopathogenesis. Expert Rev Gastroenterol Hepatol. 2009;3(6):599–606.

    Article  PubMed  CAS  Google Scholar 

  6. Sokol RJ, Mack C. Etiopathogenesis of biliary atresia. Semin Liver Dis. 2001;21(4):517–24.

    Article  PubMed  CAS  Google Scholar 

  7. Tan CE, Driver M, Howard ER, Moscoso GJ. Extrahepatic biliary atresia: a first-trimester event? Clues from light microscopy and immunohistochemistry. J Pediatr Surg. 1994;29(6):808–14.

    Article  PubMed  CAS  Google Scholar 

  8. Arikan C, Berdeli A, Ozgenc F, Tumgor G, Yagci RV, Aydogdu S. Positive association of macrophage migration inhibitory factor gene-173G/C polymorphism with biliary atresia. J Pediatr Gastroenterol Nutr. 2006;42(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  9. Mack CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis. 2007;27(3):233–42.

    Article  PubMed  CAS  Google Scholar 

  10. Santos JL, Carvalho E, Bezerra JA. Advances in biliary atresia: from patient care to research. Braz J Med Biol Res. 2010;43(6):522–7.

    Article  PubMed  CAS  Google Scholar 

  11. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129(8):1819–28.

    PubMed  CAS  Google Scholar 

  12. Lemaigre FP. Development of the biliary tract. Mech Dev. 2003;120(1):81–7.

    Article  PubMed  CAS  Google Scholar 

  13. Shiojiri N, Katayama H. Secondary joining of the bile ducts during the hepatogenesis of the mouse embryo. Anat Embryol (Berl). 1987;177(2):153–63.

    Article  CAS  Google Scholar 

  14. Kohsaka T, Yuan ZR, Guo SX, Tagawa M, Nakamura A, Nakano M, et al. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology. 2002;36(4 Pt 1):904–12.

    PubMed  CAS  Google Scholar 

  15. Flynn DM, Nijjar S, Hubscher SG, de Goyet Jde V, Kelly DA, Strain AJ, et al. The role of Notch receptor expression in bile duct development and disease. J Pathol. 2004;204(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  16. Mazziotti MV, Willis LK, Heuckeroth RO, LaRegina MC, Swanson PE, Overbeek PA, et al. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology. 1999;30(2):372–8.

    Article  PubMed  CAS  Google Scholar 

  17. Schon P, Tsuchiya K, Lenoir D, Mochizuki T, Guichard C, Takai S, et al. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left–right axis development and biliary atresia. Hum Genet. 2002;110(2):157–65.

    Article  PubMed  Google Scholar 

  18. Bamford RN, Roessler E, Burdine RD, Saplakoglu U, dela Cruz J, Splitt M, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left–right laterality defects. Nat Genet. 2000;26(3):365–9.

    Article  PubMed  CAS  Google Scholar 

  19. Davit-Spraul A, Baussan C, Hermeziu B, Bernard O, Jacquemin E. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr. 2008;46(1):111–2.

    Article  PubMed  CAS  Google Scholar 

  20. Jacquemin E, Cresteil D, Raynaud N, Hadchouel M. CFCI gene mutation and biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr. 2002;34(3):326–7.

    Article  PubMed  Google Scholar 

  21. Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004;74(1):93–105.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang DY, Sabla G, Shivakumar P, Tiao G, Sokol RJ, Mack C, et al. Coordinate expression of regulatory genes differentiates embryonic and perinatal forms of biliary atresia. Hepatology. 2004;39(4):954–62.

    Article  PubMed  CAS  Google Scholar 

  23. Chen L, Goryachev A, Sun J, Kim P, Zhang H, Phillips MJ, et al. Altered expression of genes involved in hepatic morphogenesis and fibrogenesis are identified by cDNA microarray analysis in biliary atresia. Hepatology. 2003;38(3):567–76.

    Article  PubMed  CAS  Google Scholar 

  24. Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM, Kim I, et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell. 2009;17(1):62–74.

    Article  PubMed  CAS  Google Scholar 

  25. Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, et al. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest. 2006;116(6):1484–93.

    Article  PubMed  CAS  Google Scholar 

  26. Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 2004;36(1):83–7.

    Article  PubMed  CAS  Google Scholar 

  27. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322(5907):1490–4.

    Article  PubMed  CAS  Google Scholar 

  28. Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129(8):1829–38.

    PubMed  CAS  Google Scholar 

  29. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol. 2007;308(2):355–67.

    Article  PubMed  CAS  Google Scholar 

  30. Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol. 2011;43(2):245–56.

    Article  PubMed  CAS  Google Scholar 

  31. O’Hara SP, Mott JL, Splinter PL, Gores GJ, LaRusso NF. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology. 2009;136(1):17–25.

    Article  PubMed  Google Scholar 

  32. Hand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology. 2009;49(2):618–26.

    Article  PubMed  CAS  Google Scholar 

  33. Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology. 2009;136(7):2304–15. (e1–e4).

    Article  PubMed  CAS  Google Scholar 

  34. Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR. The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology. 2009;136(3):1081–90.

    Article  PubMed  CAS  Google Scholar 

  35. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008;118(11):3714–24.

    Article  PubMed  CAS  Google Scholar 

  36. Hand NJ, Horner AM, Master ZR, Boateng LA, LeGuen C, Uvaydova M, et al. MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia. J Pediatr Gastroenterol Nutr. 2012;54(2):186–92.

    Article  PubMed  CAS  Google Scholar 

  37. Matthews RP, Eauclaire SF, Mugnier M, Lorent K, Cui S, Ross MM, et al. DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology. 2011;53(3):905–14.

    Article  PubMed  CAS  Google Scholar 

  38. Kawahigashi Y, Mishima T, Mizuguchi Y, Arima Y, Yokomuro S, Kanda T, et al. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs. J Nihon Med Sch. 2009;76(4):188–97.

    Article  CAS  Google Scholar 

  39. Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun. 2010;391(1):316–21.

    Article  PubMed  CAS  Google Scholar 

  40. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.

    Article  PubMed  CAS  Google Scholar 

  41. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

    Article  PubMed  Google Scholar 

  42. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.

    Article  PubMed  Google Scholar 

  43. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    Article  PubMed  CAS  Google Scholar 

  44. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  PubMed  CAS  Google Scholar 

  45. Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 2011;105(11):1733–40.

    Article  PubMed  CAS  Google Scholar 

  46. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.

    Article  PubMed  CAS  Google Scholar 

  47. Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB, Friedman JR. Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2011;53(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  48. Zahm AM, Hand NJ, Boateng LA, Friedman JR. Circulating microRNA is a biomarker of biliary atresia. J Pediatr Gastroenterol Nutr. 2012;55(4):366–9.

    Article  PubMed  CAS  Google Scholar 

  49. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem. 2002;87(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  50. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  51. Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol. 2009;21(3):359–66.

    Article  PubMed  CAS  Google Scholar 

  52. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  PubMed  CAS  Google Scholar 

  53. Kruger DH, Schroeder C, Santibanez-Koref M, Reuter M. Avoidance of DNA methylation. A virus-encoded methylase inhibitor and evidence for counter selection of methylase recognition sites in viral genomes. Cell Biophys. 1989;15(1–2):87–95.

    PubMed  CAS  Google Scholar 

  54. Glenn CC, Nicholls RD, Robinson WP, Saitoh S, Niikawa N, Schinzel A, et al. Modification of 15q11–q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet. 1993;2(9):1377–82.

    Article  PubMed  CAS  Google Scholar 

  55. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990;33(11):1665–73.

    Article  PubMed  CAS  Google Scholar 

  56. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2009;60(12):3613–22.

    Article  PubMed  CAS  Google Scholar 

  57. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010;464(7293):1351–6.

    Article  PubMed  CAS  Google Scholar 

  58. Dong R, Zhao R, Zheng S, Zheng Y, Xiong S, Chu Y. Abnormal DNA methylation of ITGAL (CD11a) in CD4+ T cells from infants with biliary atresia. Biochem Biophys Res Commun. 2012;417(3):986–90.

    Article  PubMed  CAS  Google Scholar 

  59. Garcia-Barcelo MM, Yeung MY, Miao XP, Tang CS, Cheng G, So MT, et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet. 2010;19(14):2917–25.

    Article  PubMed  CAS  Google Scholar 

  60. Leyva-Vega M, Gerfen J, Thiel BD, Jurkiewicz D, Rand EB, Pawlowska J, et al. Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A. 2010;152A(4):886–95.

    Article  PubMed  CAS  Google Scholar 

  61. Smith BM, Laberge JM, Schreiber R, Weber AM, Blanchard H. Familial biliary atresia in three siblings including twins. J Pediatr Surg. 1991;26(11):1331–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Nakamura.

About this article

Cite this article

Nakamura, K., Tanoue, A. Etiology of biliary atresia as a developmental anomaly: recent advances. J Hepatobiliary Pancreat Sci 20, 459–464 (2013). https://doi.org/10.1007/s00534-013-0604-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00534-013-0604-4

Keywords

Navigation