Skip to main content
Log in

Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases

  • Topics
  • Regenerative medicine in Hepato-Biliary-Pancreatic Sciences
  • Published:
Journal of Hepato-Biliary-Pancreatic Sciences

Abstract

Liver regeneration is a necessary process that most liver damage depends on for recovery. Regeneration is achieved by a complex interactive network consisting of liver cells (hepatocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells, and stem cells) and extrahepatic organs (thyroid gland, adrenal gland, pancreas, duodenum, and autonomous nervous system). The restoration of liver volume depends on hepatocyte proliferation, which includes initiation, proliferation, and termination phases. Hepatocytes are “primed” mainly by Kupffer cells via cytokines (IL-6 and TNF-alpha) and then “proliferation” and “cell growth” of hepatocytes are induced by the stimulations of cytokines and growth factors (HGF and TGF-alpha). Liver regeneration is achieved by cell proliferation and cell growth, where the IL-6/STAT3 and PI3-K/PDK1/Akt pathways play pivotal roles, respectively. IL-6/STAT3 pathway regulates hepatocyte proliferation via cyclin D1/p21 and protects against cell death by upregulating FLIP, Bcl-2, Bcl-xL, Ref1, and MnSOD. PI3-K/PDK1/Akt is known to be responsible for regulation of cell size via its downstream molecules such as mTOR in addition to being known for its survival, anti-apoptotic and anti-oxidative properties. Although the molecular mechanisms of liver regeneration have been actively studied, the mechanisms of liver regeneration must be elucidated and leveraged for the sufficient treatment of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viebahn CS, Yeoh GC. What fires Prometheus? The link between inflammation and regeneration following chronic liver injury. Int J Biochem Cell Biol. 2008;40(5):855–73.

    Article  CAS  PubMed  Google Scholar 

  2. Pahlavan PS, Feldmann RE Jr, Zavos C, Kountouras J. Prometheus’ challenge: molecular, cellular and systemic aspects of liver regeneration. J Surg Res. 2006;134(2):238–51.

    Article  CAS  PubMed  Google Scholar 

  3. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5(10):836–47.

    Article  CAS  PubMed  Google Scholar 

  4. Moro L, Marra E, Capuano F, Greco M. Thyroid hormone treatment of hypothyroid rats restores the regenerative capacity and the mitochondrial membrane permeability properties of the liver after partial hepatectomy. Endocrinology. 2004;145(11):5121–8.

    Article  CAS  PubMed  Google Scholar 

  5. Malik R, Habib M, Tootle R, Hodgson H. Exogenous thyroid hormone induces liver enlargement, whilst maintaining regenerative potential—a study relevant to donor preconditioning. Am J Transplant. 2005;5(8):1801–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kopplow K, Wayss K, Enzmann H, Mayer D. Dehydroepiandrosterone causes hyperplasia and impairs regeneration in rat liver. Int J Oncol. 2005;27(6):1551–8.

    CAS  PubMed  Google Scholar 

  7. Sabugal R, Robert MQ, Julve J, Auwerx J, Llobera M, Peinado-Onsurbe J. Hepatic regeneration induces changes in lipoprotein lipase activity in several tissues and its re-expression in the liver. Biochem J. 1996;318(Pt 2):597–602.

    CAS  PubMed  Google Scholar 

  8. Tang TX, Hashimoto T, Chao LY, Itoh K, Manabe T. Effects of partial pancreatectomy on liver regeneration in rats. J Surg Res. 1997;72(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  9. Marti U, Burwen SJ, Jones AL. Biological effects of epidermal growth factor, with emphasis on the gastrointestinal tract and liver: an update. Hepatology. 1989;9(1):126–38.

    Article  CAS  PubMed  Google Scholar 

  10. Kiba T. The role of the autonomic nervous system in liver regeneration and apoptosis—recent developments. Digestion. 2002;66(2):79–88.

    Article  PubMed  Google Scholar 

  11. Huda KA, Guo L, Haga S, Murata H, Ogino T, Fukai M, et al. Ex vivo adenoviral gene transfer of constitutively activated STAT3 reduces post-transplant liver injury and promotes regeneration in a 20% rat partial liver transplant model. Transpl Int. 2006;19(5):415–23.

    Article  CAS  PubMed  Google Scholar 

  12. Webber EM, Bruix J, Pierce RH, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology. 1998;28(5):1226–34.

    Article  CAS  PubMed  Google Scholar 

  13. Cornell RP, Liljequist BL, Bartizal KF. Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology. 1990;11(6):916–22.

    Article  CAS  PubMed  Google Scholar 

  14. Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med. 2003;198(6):913–23.

    Article  CAS  PubMed  Google Scholar 

  15. Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology. 2003;124(3):692–700.

    Article  CAS  PubMed  Google Scholar 

  16. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.

    CAS  PubMed  Google Scholar 

  17. Zimmers TA, McKillop IH, Pierce RH, Yoo JY, Koniaris LG. Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology. 2003;38(2):326–34.

    Article  CAS  PubMed  Google Scholar 

  18. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274(5291):1379–83.

    Article  CAS  PubMed  Google Scholar 

  19. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA. 2004;101(13):4477–82.

    Article  CAS  PubMed  Google Scholar 

  20. Kim TH, Mars WM, Stolz DB, Petersen BE, Michalopoulos GK. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology. 1997;26(4):896–904.

    Article  CAS  PubMed  Google Scholar 

  21. Mohammed FF, Pennington CJ, Kassiri Z, Rubin JS, Soloway PD, Ruther U, et al. Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology. 2005;41(4):857–67.

    Article  CAS  PubMed  Google Scholar 

  22. Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C. Met provides essential signals for liver regeneration. Proc Natl Acad Sci USA. 2004;101(29):10608–13.

    Article  CAS  PubMed  Google Scholar 

  23. Okano J, Shiota G, Matsumoto K, Yasui S, Kurimasa A, Hisatome I, et al. Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway. Biochem Biophys Res Commun. 2003;309(2):298–304.

    Article  CAS  PubMed  Google Scholar 

  24. Scheving LA, Stevenson MC, Taylormoore JM, Traxler P, Russell WE. Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation. Biochem Biophys Res Commun. 2002;290(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  25. Tomiya T, Ogata I, Yamaoka M, Yanase M, Inoue Y, Fujiwara K. The mitogenic activity of hepatocyte growth factor on rat hepatocytes is dependent upon endogenous transforming growth factor-alpha. Am J Pathol. 2000;157(5):1693–701.

    CAS  PubMed  Google Scholar 

  26. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(2 Suppl 1):S45–53.

    Article  CAS  PubMed  Google Scholar 

  27. Cressman DE, Diamond RH, Taub R. Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology. 1995;21(5):1443–9.

    Article  CAS  PubMed  Google Scholar 

  28. Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19(21):2607–11.

    Article  CAS  PubMed  Google Scholar 

  29. Waelput W, Verhee A, Broekaert D, Eyckerman S, Vandekerckhove J, Beattie JH, et al. Identification and expression analysis of leptin-regulated immediate early response and late target genes. Biochem J. 2000;348(Pt 1):55–61.

    Article  CAS  PubMed  Google Scholar 

  30. Levy DE, Lee CK. What does Stat3 do? J Clin Invest. 2002;109(9):1143–8.

    CAS  PubMed  Google Scholar 

  31. Schindler CW. Series introduction. JAK-STAT signaling in human disease. J Clin Invest. 2002;109(9):1133–7.

    CAS  PubMed  Google Scholar 

  32. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.

    Article  CAS  PubMed  Google Scholar 

  33. Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630–5.

    Article  CAS  PubMed  Google Scholar 

  34. Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19(21):2468–73.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Liang X, Kellendonk C, Poli V, Taub R. STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem. 2002;277(32):28411–7.

    Article  CAS  PubMed  Google Scholar 

  36. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA. 1997;94(8):3801–4.

    Article  CAS  PubMed  Google Scholar 

  37. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  38. Terui K, Ozaki M. The role of STAT3 in liver regeneration. Drugs Today (Barc). 2005;41(7):461–9.

    Article  CAS  Google Scholar 

  39. Loyer P, Cariou S, Glaise D, Bilodeau M, Baffet G, Guguen-Guillouzo C. Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J Biol Chem. 1996;271(19):11484–92.

    Article  CAS  PubMed  Google Scholar 

  40. Lavia P, Jansen-Durr P. E2F target genes and cell-cycle checkpoint control. Bioessays. 1999;21(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal. 2008;20(4):581–9.

    Article  CAS  PubMed  Google Scholar 

  42. Georgiev P, Dahm F, Graf R, Clavien PA. Blocking the path to death: anti-apoptotic molecules in ischemia/reperfusion injury of the liver. Curr Pharm Des. 2006;12(23):2911–21.

    Article  CAS  PubMed  Google Scholar 

  43. Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009;7(2):144–55.

    Article  CAS  PubMed  Google Scholar 

  44. Liu YG, Liu SX, Liang XH, Zhang Q, Gao LF, Han LH, et al. Blockade of TRAIL pathway ameliorates HBV-induced hepatocyte apoptosis in an acute hepatitis model. Biochem Biophys Res Commun. 2007;352(2):329–34.

    Article  CAS  PubMed  Google Scholar 

  45. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997;277(5327):818–21.

    Article  CAS  PubMed  Google Scholar 

  46. Boya P, Pauleau AL, Poncet D, Gonzalez-Polo RA, Zamzami N, Kroemer G. Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta. 2004;1659(2–3):178–89.

    CAS  PubMed  Google Scholar 

  47. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002;122(2):366–75.

    Article  CAS  PubMed  Google Scholar 

  48. Leifeld L, Nattermann J, Fielenbach M, Schmitz V, Sauerbruch T, Spengler U. Intrahepatic activation of caspases in human fulminant hepatic failure. Liver Int. 2006;26(7):872–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kovalovich K, Li W, DeAngelis R, Greenbaum LE, Ciliberto G, Taub R. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL. J Biol Chem. 2001;276(28):26605–13.

    Article  CAS  PubMed  Google Scholar 

  50. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta. 2010;1805(2):123–40.

    Google Scholar 

  51. Kruidering M, Evan GI. Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life. 2000;50(2):85–90.

    CAS  PubMed  Google Scholar 

  52. Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 2008;18(4):157–64.

    Article  CAS  PubMed  Google Scholar 

  53. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, et al. Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Invest. 2003;112(7):989–98.

    CAS  PubMed  Google Scholar 

  54. Terui K, Enosawa S, Haga S, Zhang HQ, Kuroda H, Kouchi K, et al. Stat3 confers resistance against hypoxia/reoxygenation-induced oxidative injury in hepatocytes through upregulation of Mn-SOD. J Hepatol. 2004;41(6):957–65.

    Article  CAS  PubMed  Google Scholar 

  55. Vetelainen R, van Vliet A, Gouma DJ, van Gulik TM. Steatosis as a risk factor in liver surgery. Ann Surg. 2007;245(1):20–30.

    Article  PubMed  Google Scholar 

  56. Kooby DA, Fong Y, Suriawinata A, Gonen M, Allen PJ, Klimstra DS, et al. Impact of steatosis on perioperative outcome following hepatic resection. J Gastrointest Surg. 2003;7(8):1034–44.

    Article  PubMed  Google Scholar 

  57. Sauer P, Schemmer P, Uhl W, Encke J. Living-donor liver transplantation: evaluation of donor and recipient. Nephrol Dial Transplant. 2004;19(Suppl l):4. (iv11–5).

    Google Scholar 

  58. Imber CJ, St Peter SD, Handa A, Friend PJ. Hepatic steatosis and its relationship to transplantation. Liver Transpl. 2002;8(5):415–23.

    Article  PubMed  Google Scholar 

  59. Crowley H, Lewis WD, Gordon F, Jenkins R, Khettry U. Steatosis in donor and transplant liver biopsies. Hum Pathol. 2000;31(10):1209–13.

    Article  CAS  PubMed  Google Scholar 

  60. Akabayashi A, Slingsby BT, Fujita M. The first donor death after living-related liver transplantation in Japan. Transplantation. 2004;77(4):634.

    Article  PubMed  Google Scholar 

  61. Yamamoto K, Takada Y, Fujimoto Y, Haga H, Oike F, Kobayashi N, et al. Nonalcoholic steatohepatitis in donors for living donor liver transplantation. Transplantation. 2007;83(3):257–62.

    Article  PubMed  Google Scholar 

  62. Murata H, Yagi T, Iwagaki H, Ogino T, Sadamori H, Matsukawa H, et al. Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model. J Gastroenterol Hepatol. 2007;22(12):2173–80.

    Article  CAS  PubMed  Google Scholar 

  63. Torbenson M, Yang SQ, Liu HZ, Huang J, Gage W, Diehl AM. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am J Pathol. 2002;161(1):155–61.

    CAS  PubMed  Google Scholar 

  64. Wu H, Wade M, Krall L, Grisham J, Xiong Y, Van Dyke T. Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 1996;10(3):245–60.

    Article  CAS  PubMed  Google Scholar 

  65. Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science. 1996;272(5262):719–22.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem. 2003;278(36):33753–62.

    Article  CAS  PubMed  Google Scholar 

  67. Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol. 2004;6(4):366–72.

    Article  CAS  PubMed  Google Scholar 

  68. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279(20):21085–95.

    Article  CAS  PubMed  Google Scholar 

  69. Lu Y, Parkyn L, Otterbein LE, Kureishi Y, Walsh K, Ray A, et al. Activated Akt protects the lung from oxidant-induced injury and delays death of mice. J Exp Med. 2001;193(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ozaki M, Haga S, Zhang HQ, Irani K, Suzuki S. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death Differ. 2003;10(5):508–15.

    Article  CAS  PubMed  Google Scholar 

  71. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 2000;408(6815):994–7.

    Article  CAS  PubMed  Google Scholar 

  72. Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002;13(7):2276–88.

    Article  CAS  PubMed  Google Scholar 

  73. G-Amlak M, Uddin S, Mahmud D, Damacela I, Lavelle D, Ahmed M, et al. Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem Biophys Res Commun. 2002;297(4):760–4.

    Article  CAS  PubMed  Google Scholar 

  74. Faridi J, Fawcett J, Wang L, Roth RA. Akt promotes increased mammalian cell size by stimulating protein synthesis and inhibiting protein degradation. Am J Physiol Endocrinol Metab. 2003;285(5):E964–72.

    CAS  PubMed  Google Scholar 

  75. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250–60.

    Article  CAS  PubMed  Google Scholar 

  76. Mourani PM, Garl PJ, Wenzlau JM, Carpenter TC, Stenmark KR, Weiser-Evans MC. Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. Circulation. 2004;109(10):1299–306.

    Article  CAS  PubMed  Google Scholar 

  77. Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, et al. Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem. 2002;277(20):17892–900.

    Article  CAS  PubMed  Google Scholar 

  78. Osawa Y, Banno Y, Nagaki M, Brenner DA, Naiki T, Nozawa Y, et al. TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol. 2001;167(1):173–80.

    CAS  PubMed  Google Scholar 

  79. Puri KD, Doggett TA, Huang CY, Douangpanya J, Hayflick JS, Turner M, et al. The role of endothelial PI3Kgamma activity in neutrophil trafficking. Blood. 2005;106(1):150–7.

    Article  CAS  PubMed  Google Scholar 

  80. Munugalavadla V, Borneo J, Ingram DA, Kapur R. p85alpha subunit of class IA PI-3 kinase is crucial for macrophage growth and migration. Blood. 2005;106(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  81. Koniaris LG, McKillop IH, Schwartz SI, Zimmers TA. Liver regeneration. J Am Coll Surg. 2003;197(4):634–59.

    Article  PubMed  Google Scholar 

  82. Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999;253(1):239–54.

    Article  CAS  PubMed  Google Scholar 

  83. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.

    Article  PubMed  Google Scholar 

  84. Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008;415(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  85. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004;37(2):449–71.

    Article  CAS  PubMed  Google Scholar 

  86. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  87. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 1997;272(50):31515–24.

    Article  CAS  PubMed  Google Scholar 

  88. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275(5300):665–8.

    Article  CAS  PubMed  Google Scholar 

  89. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.

    CAS  PubMed  Google Scholar 

  90. Matheny RW Jr, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood). 2009;234(11):1264–70.

    Article  CAS  Google Scholar 

  91. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997;277(5325):567–70.

    Article  CAS  PubMed  Google Scholar 

  92. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16(12):1472–87.

    Article  CAS  PubMed  Google Scholar 

  93. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  CAS  PubMed  Google Scholar 

  94. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci. 2006;31(6):342–8.

    Article  CAS  PubMed  Google Scholar 

  95. Haga S, Ogawa W, Inoue H, Terui K, Ogino T, Igarashi R, et al. Compensatory recovery of liver mass by Akt-mediated hepatocellular hypertrophy in liver-specific STAT3-deficient mice. J Hepatol. 2005;43(5):799–807.

    Article  CAS  PubMed  Google Scholar 

  96. Collins BJ, Deak M, Arthur JS, Armit LJ, Alessi DR. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 2003;22(16):4202–11.

    Article  CAS  PubMed  Google Scholar 

  97. Haga S, Ozaki M, Inoue H, Okamoto Y, Ogawa W, Takeda K, et al. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology. 2009;49(1):204–14.

    Article  CAS  PubMed  Google Scholar 

  98. Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA. 2004;101(7):2082–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mullany LK, Nelsen CJ, Hanse EA, Goggin MM, Anttila CK, Peterson M, et al. Akt-mediated liver growth promotes induction of cyclin E through a novel translational mechanism and a p21-mediated cell cycle arrest. J Biol Chem. 2007;282(29):21244–52.

    Article  CAS  PubMed  Google Scholar 

  100. Jackson LN, Larson SD, Silva SR, Rychahou PG, Chen LA, Qiu S, et al. PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 2008;294(6):G1401–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michitaka Ozaki.

About this article

Cite this article

Fujiyoshi, M., Ozaki, M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J Hepatobiliary Pancreat Sci 18, 13–22 (2011). https://doi.org/10.1007/s00534-010-0304-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00534-010-0304-2

Keywords

Navigation