Skip to main content

Advertisement

Log in

Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis

  • ORIGINAL PAPER
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

 The mid-Pleistocene climate transition is a complex global change leading to Late Pleistocene ice ages with increased mean ice volume and dominant 100-ka cycle. A thorough understanding of this transition demands quantitative investigations in the time and frequency domains, and in the “stochastic domain”. Three methods of time-series analysis are presented which have been adapted for this purpose. They are tested by means of predefined, artificial time series and applied to benthic oxygen isotope (δ18O) records which serve as ice volume indicator. Results are as follows: (a) The time-dependent mean shows an increase of 0.35‰ vs PDB from 942 to 892 ka. (b) Evolutionary spectral analysis reveals an abrupt increase of 100-ka cycle amplitude at approximately 650 ka. (c) Probability density function exhibits a bifurcation behavior at approximately 725 ka. These findings point to a multiple transition from a more linear climate system to a strong nonlinear system. The significant lead of the transition in mean, in relation to the 100-ka amplitude change and bifurcation is left open for explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 8 July 1996 / Accepted: 18 December 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudelsee, M., Stattegger, K. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis. Geol Rundsch 86, 499–511 (1997). https://doi.org/10.1007/s005310050157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005310050157

Navigation