Abstract
The South Indian Granulite Terrane is traversed by several crustal scale shear zones, however the tectonic significance of the shear zones are poorly understood. The tectonic relevance of the Bavali Shear Zone (BSZ) ‒ in the WNW extremity of the Moyar Shear Zone ‒ at the interface between the Paleoarchean to Neoarchean Western Dharwar Craton (WDC) in the north and the late Neoarchean Nilgiri block in the south is poorly constrained. The most conspicuous feature in the WDC is a set of N-striking gently-plunging upright folds and N-striking dextral shear zones (deformation D4). These D4 structures are superposed on a shallowly-dipping D3 recumbent folds and gently-dipping mylonite fabrics in a suite of anatectic gneisses, lower-grade supracrustal rocks and foliated granitoids. In regional scale, the D3 fold axes curve into the WNW-striking BSZ (D5 deformation), a steep-dipping transpressional shear zone with dextral kinematics. The BSZ is characterized by steeply-plunging stretching lineations sub-parallel to the hinges of reclined folds on the pre-shearing fabrics in the lithologies of the adjacent cratons. Syn-D5 charnockite veins suggest the BSZ formed at T > 850 °C. Existing U–Pb (zircon) dates and monazite chemical dates (this study), indicate that the deformation-metamorphism-magmatism in the WDC and the Nilgiri block occurred between 3400 and 2500 Ma; by contrast the high-T D5 oblique crustal shortening in the BSZ contemporaneous with multiple felsic emplacements was active between 830 and 720 Ma. The BSZ collision orogeny possibly preceded the eventual integration of the Greater India landmass with the Gondwanaland during the early-Palaeozoic.
Graphical abstract
Similar content being viewed by others
Data availability
All the data generated during this study are incorporated within the article and in the supplementary material provided along with the article. Citations of datasets used in Fig. 12 is provided in the figure itself.
References
Abdelsalam MJ, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian Shield. J Afr Earth Sci 23:283–310. https://doi.org/10.1016/S0899-5362(97)00003-1
Amaldev T, Santosh M, Tang L, Baiju KR, Tsunogae T, Satyanarayanan M (2016) Mesoarchean convergent margin processes and crustal evolution: Petrologic, geochemical and zircon U-Pb and Lu–Hf data from the Mercara Suture Zone, Southern India. Gond Res 37:182–204. https://doi.org/10.1016/j.gr.2016.05.017
Anderson DL (1994) Superplume or supercontinents? Geology 22:39–42. https://doi.org/10.1130/0091-7613(1994)022%3C0039:SOS%3E2.3.CO;2
Babinski M, Chemale F, Hartman L, van Schmus WR, da Silva LC (1996) Juvenile accretion at 750–700 Ma in Southern Brazil. Geology 24:439‒442. https://doi.org/10.1130/0091-7613(1996)024<0439:JAAMIS>2.3.CO;2s
Banerjee A, Sequeira N, Bhattacharya A (2021) Tectonics of the Greater India Proterozoic Fold Belt, with emphasis on the nature of curvature of the belt in West-central India. Earth Sci Rev 221:103758. https://doi.org/10.1016/j.earscirev.2021.103758
Banerjee A, Cogné N, Sequeira N, Bhattacharya A (2022a) Dynamics of Early Neoproterozoic accretion, West-Central India: I. Geochronol Geochemy Lithos 422–423:106715. https://doi.org/10.1016/j.lithos.2022.106715
Banerjee A, Prabhakar N, Sequeira N, Cogné N, Bhattacharya A (2022b) Dynamics of Early Neoproterozoic accretion, west-central India II ~1.65 Ga HT-LP and ~0.95 Ga LT-HP metamorphism in Godhra-Chhota Udepur, and a tectonic model for Early Neoproterozoic accretion. Lithos. https://doi.org/10.1016/j.lithos.2022.106740
Barbarin B (1999) A review of the relationships between granitoid types, their origins and geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
Beckinsale RD, Drury SA, Holt RW (1980) 3360 m-yr. old gneisses from the South Indian Craton. Nature 283:469–470. https://doi.org/10.1038/283469a0
Beckinsale RD, Reeves-Smith G, Gale NH, Holt RW, Thompson B (1982) Rb-Sr and Pb-Pb whole rock isochron ages and REE data for Archaean gneisses and granites, Karnataka State, South India. Indo-U.S. Workshop on Precambrian of South India (abs). NGRI Hyderabad 35‒36. https://doi.org/10.1016/0301-9268(80)90059-5
Behera BM, Waele BD, Thirukumaran V, Sundaralingam K, Narayanan S, Sivalingam B, Biswal TK (2019) Kinematics, strain pattern and geochronology of the Salem-Attur shear zone: Tectonic implications for the multiple sheared Salem-Namakkal blocks of the Southern Granulite terrane, India. Precamb Res 324:32–61. https://doi.org/10.1016/j.precamres.2019.01.022
Bertrand M (1884) Rapports de structure des Alpes de Glaris et du bassin houiller du Nord. Bull Soc Geol France 3:318–330
Bhadra BK (2000) Ductile shearing in Attur shear zone and its relation with Moyar shear zone, South India. Gond Res 3(3):361–369. https://doi.org/10.1016/S1342-937X(05)70294-X
Bhadra S, Nasipuri P (2017) Tectonothermal evolution of a garnet-bearing quartzofeldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics. Lithos 274:1–18. https://doi.org/10.1016/j.lithos.2016.12.031
Bhaskar Rao YJ, Sivaraman TV, Pantulu GVC, Gopalan K, Naqvi SM (1992) Rb–Sr ages of late Archean metavolcanics and granites, Dharwar craton, South India and evidence for early Proterozoic thermotectonic event(s). Precamb Res 59:145–170. https://doi.org/10.1016/0301-9268(92)90055-S
Bhattacharya A (2019) Deformation-driven emplacement-differentiation in the Closepet pluton, Dharwar Craton, South India: an alternate view. Geol Soc Spec Publ 489:261–274. https://doi.org/10.1144/SP489-2019-315
Bidyananda M, Deomurari MP, Goswami JN (2003) 207 Pb–206 Pb ages of zircons from the Nuggihalli schist belt, Dharwar craton, southern India. Curr Sci 1482‒1485. https://www.jstor.org/stable/24108834
Brandt S, Raith MM, Schenk V, Sengupta P, Srikantappa C, Gerdes A (2014) Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites. Precamb Res 246:91–122. https://doi.org/10.1016/j.precamres.2014.01.007
Braun I, Bröcker M (2004) Monazite dating of granitic gneisses and leucogranites from the Kerala Khondalite Belt, southern India: implications for Late Proterozoic crustal evolution in East Gondwana. Int J Earth Sci 93(1):13–22. https://doi.org/10.1007/s00531-003-0376-1
Buhl D (1987) U-Pb und Rb-Sr Altersbestimmungen und Untersuchungen zum Strontium-Isotopenaustausch an Granuliten Siidindiens. Ph.D. Thesis, University of Miinster, FRG
Burke K, Khan SD, Mart RW (2008) Grenville Province and Monteregian carbonatite and nepheline syenite distribution related to rifting, collision, and plume passage. Geology 36:983–986. https://doi.org/10.1130/G25247A.1
Catlos EJ, Dubey CS, Sivasubramanian P (2008) Monazite ages from carbonatites and high-grade assemblages along the Kambam Fault (Southern Granulite Terrane, South India). Am Mineral 93(8–9):1230–1244. https://doi.org/10.2138/am.2008.2712
Cawood PA, Pisarevsky SA (2006) Was Baltica right-way-up or upside-down in the Neoproterozoic? J Geol Soc 163(5):753–759. https://doi.org/10.1144/0016-76492005-126
Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precamb Res 99(1–2):91–111. https://doi.org/10.1016/S0301-9268(99)00055-8
Chadwick B, Vasudev VN, Hegde GV, Nutman AP (2007) Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga schist belt: implications for Neoarchaean convergence in the Dharwar craton, Southern India. J Geol Soc India 69(1):5–24
Chardon D, Jayananda M, Peucat JJ (2011) Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux. Geochem Geophy Geosys. https://doi.org/10.1029/2010GC003398
Chatterjee N, Mazumdar AC, Bhattacharya A, Saikia RR (2007) Mesoproterozoic granulites of the Shillong-Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precamb Res 152(1–2):1–26. https://doi.org/10.1016/j.precamres.2006.08.011
Chatterjee SM, Sarkar AK, Roy A, Manna A (2020) Mid-neoproterozoic tectonics of Northwestern India: evidence of stitching Pluton along 810 Ma Phulad Shear Zone. Tectonics. https://doi.org/10.1029/2019TC005902
Chattopadhyay A, Khasdeo L (2011) Structural evolution of Gavilgarh-Tan Shear Zone, central India: a possible case of partitioned transpression during Mesoproterozoic oblique collision within Central Indian Tectonic Zone. Precamb Res 186(1–4):70–88. https://doi.org/10.1016/j.precamres.2011.01.006
Chattopadhyay A, Chatterjee A, Das K, Sarkar A (2017) Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages. J Asian Earth Sci 147:485–501. https://doi.org/10.1016/j.jseaes.2017.08.018
Chetty TRK, Rao YB (2006) Constrictive deformation in transpressional regime: field evidence from the Cauvery Shear Zone, Southern Granulite Terrain, India. J Struct Geol 28(4):713–720. https://doi.org/10.1016/j.jsg.2006.01.007
Chetty TRK, Yellappa T, Nagesh P, Mohanty DP, Venkatasivappa V, Santosh M, Tsunogae T (2011) Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture zone, Southern India. J Asian Earth Sci 42(3):176–190. https://doi.org/10.1016/j.jseaes.2011.02.009
Chetty TRK, Mohanty DP, Yellappa T (2012) Mapping of shear zones in the Western Ghats, Southwestern part of Dharwar Craton. J Geol Soc India 79(2):151–154. https://doi.org/10.1007/s12594-012-0023-1
Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62(14):2475–2497. https://doi.org/10.1016/S0016-7037(98)00171-9
Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gond Res 25(1):190–203. https://doi.org/10.1016/j.gr.2013.01.002
Dalziel IW (1991) Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology 19(6):598–601. https://doi.org/10.1130/00917613(1991)019%3C0598:PMOLAE%3E2.3.CO;2
Dasgupta A, Bhowmik SK, Dasgupta S, Avila J, Ireland TR (2019) Mesoarchaean clockwise metamorphic PT path from the Western Dharwar Craton. Lithos 342:370–390. https://doi.org/10.1016/j.lithos.2019.06.006
Decree S, Demaiffe D, Tack L, Nimpagaritse G, De Paeped P, Boulvais P, Debaille V (2019) The Neoproterozoic Upper Ruvubu alkaline plutonic complex (Burundi) revisited: Large-scale syntectonic emplacement, magmatic differentiation and late-stage circulations of fluids. Precamb Res 325:150–172. https://doi.org/10.1016/j.precamres.2019.02.023
Deeju TR, Santosh M, Yang QY, Pradeepkumar AP, Shaji E (2016) Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes. J Asian Earth Sci 130:88–115. https://doi.org/10.1016/j.jseaes.2016.06.016
Dewey JF, Holdsworth RE, Strachan RA (1988) Transpression and transtension zones. In: Holdsworth RE, Strachan RA, Dewey JE (Eds) Continental transpressional and transtensional tectonics. Geol Soc London Spec Pub 135:1‒14. https://doi.org/10.1144/GSL.SP.1998.135.01.01
Dobretsov NL, Buslov MM, Vernikovsky VA (2003) Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gond Res 6(2):143–159. https://doi.org/10.1016/S1342-937X(05)70966-7
Drury SA, Holt RW (1980) The tectonic framework of the South Indian craton: a reconnaissance involving LANDSAT imagery. Tectonophysics 65(3–4):T1–T15. https://doi.org/10.1016/0040-1951(80)90073-6
Drury SA, Harris NBW, Holt RW, Reeves-Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92:3–20. https://doi.org/10.1086/628831
Duebendorfer EM (2003) The interpretation of stretching lineations in multiply deformed terranes: an example from the Hualapai Mountains, Arizona, USA. J Str Geol 25(9):1393–1400. https://doi.org/10.1016/S0191-8141(02)00203-1
Faleiros FM, da Cruz Campanha GA, da Silveira Bello RM, Fuzikawa K (2007) Fault–valve action and vein development during strike–slip faulting: An example from the Ribeira Shear Zon, Southeastern Brazil. Tectonophysics 438(1–4):1–32. https://doi.org/10.1016/j.tecto.2007.03.004
Fossen H, Tikoff B, Teyssier C (1994) Strain modeling of transpressional and transtensional deformation. Nor Geol Tidsskr 74(3):134–145
Fossen H, Teyssier C, Whitney D (2013) Transtensional folding. J Str Geol 56:89–102. https://doi.org/10.1016/j.jsg.2013.09.004
Fowler AR, El Kalioubi B (2004) Gravitational collapse origin of shear zones, foliations and linear structures in the Neoproterozoic cover nappes, Eastern Desert, Egypt. J Afr Earth Sci 38(1):23–40. https://doi.org/10.1016/j.jafrearsci.2003.09.003
French JE, Heaman LM, Chacko T, Rivard B (2004) Global mafic magmatism and continental breakup at 2.2 Ga: evidence from the Dharwar craton India. Geol Soc Am Abst Programs 36(5):340
French JE, Heaman LM (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precamb Res 183(3):416–441. https://doi.org/10.1016/j.precamres.2010.05.003
Frost BR, Frost CD (2008) On Charnockites. Gond Res 13(1):30–44. https://doi.org/10.1016/j.gr.2007.07.006
Gao P, Santosh M (2020) Mesoarchean accretionary mélange and tectonic erosion in the Archean Dharwar Craton, Southern India: Plate tectonics in the early Earth. Gond Res 85:291–305. https://doi.org/10.1016/j.gr.2020.05.004
Gardés E, Jaoul O, Montel JM, Seydoux-Guillaume AM, Wirth R (2006) Pb diffusion in monazite: An experimental study of Pb2++Th4+⇔2Nd3+ interdiffusion. Geochim Cosmochim Acta 70(9):2325–2336. https://doi.org/10.1016/j.gca.2006.01.018
Gardés E, Montel JM, Seydoux-Guillaume AM, Wirth R (2007) Pb diffusion in monazite: New constraints from the experimental study of Pb2+⇔ Ca2+ interdiffusion. Geochim Cosmochim Acta 71(16):4036–4043. https://doi.org/10.1016/j.gca.2007.06.036
George PM, Santosh M, Chen N, Nandakumar V, Itaya T, Sonali MK, Smruti RP, Sajeev K (2015) Cryogenian magmatism and crustal reworking in the Southern Granulite Terrane, India. Int Geol Rev 57(2):112–133. https://doi.org/10.1080/00206814.2014.999260
Ghosh SK (2001) Types of transpressional and transtensional deformation. Geol Soc Am Mem 193:1–20. https://doi.org/10.1130/0-8137-1193-2.1
Ghosh SK, Sen G, Sengupta S (2003) Rotation of long tectonic clasts in transpressional shear zones. J Str Geol 25(7):1083–1096. https://doi.org/10.1016/S0191-8141(02)00146-3
Ghosh J, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23:1–38. https://doi.org/10.1029/2002TC001444
Glorie S, De Grave J, Singh T, Payne JL, Collins AS (2014) Crustal root of the Eastern Dharwar Craton: Zircon U-Pb age and Lu–Hf isotopic evolution of the East Salem Block, Southeast India. Precamb Res 249:229–246. https://doi.org/10.1016/j.precamres.2014.05.017
Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precamb Res 155(1–2):47–68. https://doi.org/10.1016/j.precamres.2007.01.007
Han YS, Santosh M, Ganguly S, Li SS (2019) Evolution of a Mesoarchean suprasubduction zone mantle wedge in the Dharwar Craton, Southern India: Evidence from petrology, geochemistry, zircon U-Pb geochronology, and Lu–Hf isotopes. Geol J 54(5):2935–2956. https://doi.org/10.1002/gj.3440
Hanson GN, Krogstad EJ, Rajamani V (1988) Tectonic setting of the Kolar schist belt, Karnataka, India. In Workshop on The Deep Continental Crust of South India
Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900 C and 200–1000 MPa: Metasomatism and the propagation of metastable mineral phases. Am Mineral 92(10):1652–1664. https://doi.org/10.2138/am.2007.2459
Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252(5011):1409–1412. https://doi.org/10.1126/science.252.5011.1409
Hoisch TD, Wells ML, Grove M (2008) Age trends in garnet-hosted monazite inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains, Utah. Geochim Cosmochim Acta 72:5505–5520. https://doi.org/10.1016/j.gca.2008.08.012
Hokada T, Horie K, Satish-Kumar M, Ueno Y, Nasheeth A, Mishima K, Shiraishi K (2013) An appraisal of Archaean supracrustal sequences in Chitradurga schist belt, Western Dharwar Craton, Southern India. Precamb Res 227:99–119. https://doi.org/10.1016/j.precamres.2012.04.006
Hrushikesh H, Prabhakar N, Bhattacharya A (2019) Mesoproterozoic P-T–t–d history in the Vinjamuru domain, Nellore schist belt (SE India), and implications for SE India-East Antarctica correlation. Precamb Res 327:273–295. https://doi.org/10.1016/j.precamres.2019.04.002
Janots E, Engi M, Rubatto D, Berger A, Gregory C, Rahn M (2009) Metamorphic rates in collisional orogeny from in situ allanite and monazite dating. Geology 37(1):11–14. https://doi.org/10.1130/G25192A.1
Jayananda M, Chardon D, Peucat JJ, Capdevila R (2006) 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints. Precamb Res 150(12):1–26. https://doi.org/10.1016/j.precamres.2006.05.004
Jayananda M, Kano T, Peucat JJ, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precamb Res 162:160–179. https://doi.org/10.1016/j.precamres.2007.07.010
Jayananda M, Peucat J-J, Chardon D, Rao BK, Fanning CM, Corfu F (2013) Neoarchean greenstone volcanism and continental growth, Dharwar craton, Southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes. Precamb Res 227:55–76. https://doi.org/10.1016/j.precamres.2012.05.002
Jayananda M, Chardon D, Peucat JJ, Fanning CM (2015) Paleo-to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: constraints from SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes. Precamb Res 268:295–322. https://doi.org/10.1016/j.precamres.2015.07.015
Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, Southern India. Earth Sci Rev 181:12–42. https://doi.org/10.1016/j.earscirev.2018.03.013
Jayananda M, Guitreau M, Tarun Thomas T, Martin H, Aadhiseshan KR, Gireesh RV, Peucat JJ, Satyanarayanan M (2019) Geochronology and geochemistry of Meso-to Neoarchean magmatic epidote-bearing potassic granites, Western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), Southern India: implications for the successive stages of crustal reworking and cratonization. Geol Soc Spec Publ 489:79–114. https://doi.org/10.1144/SP489-2018-125
Jones RR, Holdsworth RE, Clegg P, McCaffrey K, Tavarnelli E (2004) Inclined transpression. J Struct Geol 26(8):1531–1548. https://doi.org/10.1016/j.jsg.2004.01.004
Ju YJ, Santosh M, Yu B, Tsunogae T, Yang CX (2021) Ultrahigh-temperature granulites from the southern margin of the Madurai Block, India: Petrology, metamorphic phase equilibria and zircon-monazite U-Pb geochronology. Lithos 388:106070. https://doi.org/10.1016/j.lithos.2021.106070
Jung S, Hoffer E, Hoernes S (2007) Neo-Proterozoic rift-related syenites (Northern Damara Belt, Namibia): Geochemical and Nd–Sr–Pb–O isotope constraints for mantle sources and petrogenesis. Lithos 96:415–435. https://doi.org/10.1016/j.lithos.2006.11.005
Jung S, Hauff F, Berndt J (2020) Generation of a potassic to ultrapotassic alkaline complex in a syncollisional setting through flat subduction: Constraints on magma sources and processes (Otjimbingwe alkaline complex, Damara orogen, Namibia). Gond Res 82:267–287. https://doi.org/10.1016/j.gr.2020.01.004
Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284:455–466. https://doi.org/10.1016/j.epsl.2009.05.011
Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Earth Environ Sci Trans R Soc Edinb 83(1–2):155–164. https://doi.org/10.1017/S0263593300007847
Koizumi T, Tsunogae T, Santosh M, Tsutsumi Y, Chetty TRK, Saitoh Y (2014) Petrology and zircon U-Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in Southern India. J Asian Earth Sci 95:51–64. https://doi.org/10.1016/j.jseaes.2014.04.013
Konečný P, Kusiak MA, Dunkley DJ (2018) Improving U-Th-Pb electron microprobe dating using monazite age references. Chem Geol 484:22–35. https://doi.org/10.1016/j.chemgeo.2018.02.014
Kooijman E, Upadhyay D, Mezger K, Raith MM, Berndt J, Srikantappa C (2011) Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, Southern India. Chem Geol 290(3–4):177–188. https://doi.org/10.1016/j.chemgeo.2011.09.013
Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279
Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J Metamorph Geol 14:581–589. https://doi.org/10.1046/j.1525-1314.1996.00413.x
Kumar A, Bhaskar Rao YJ, Sivaraman TV, Gopalan K (1996) Sm–Nd ages of Archaean metavolcanics of the Dharwar craton, South India. Precamb Res 80:205–216. https://doi.org/10.1016/S0301-9268(96)00015-0
Lancaster PJ, Dey S, Storey CD, Mitra A, Bhunia RK (2015) Contrasting crustal evolution processes in the Dharwar craton: insights from detrital zircon U-Pb and Hf isotopes. Gond Res 28(4):1361–1372. https://doi.org/10.1016/j.gr.2014.10.010
Laubscher HP (1988) Décollement in the Alpine system: an overview. Geol Rundsch 77(1):1–9. https://doi.org/10.1007/BF01848672
Leelanandam C, Burke K, Ashwal LD, Webb SJ (2006) Proterozoic mountain building in Peninsular India: an analysis based primarily on alkaline rock distribution. Geol Mag 143(2):195–212. https://doi.org/10.1017/S0016756805001664
Li ZX, Li XH, Kinny PD, Wang J (1999) The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci Lett 173(3):171–181. https://doi.org/10.1016/S0012-821X(99)00240-X
Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H (2003) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precamb Res 122(1–4):85–109. https://doi.org/10.1016/S0301-9268(02)00208-5
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precamb Res 160:179–210. https://doi.org/10.1016/j.precamres.2007.04.021
Li SS, Santosh M, Indu G, Shaji E, Tsunogae T (2017) Detrital zircon geochronology of quartzites from the southern Madurai Block, India: Implications for Gondwana reconstruction. Geosci Front 8(4):851–867. https://doi.org/10.1016/j.gsf.2016.07.002
Li SS, Santosh M, Palin RM (2018) Metamorphism during the Archean-Paleoproterozoic transition associated with microblock amalgamation in the Dharwar Craton, India. J Petrol 59(12):2435–2462. https://doi.org/10.1093/petrology/egy102
Ludwig KR (2003) User’s Manual for ISOPLOT/3.00: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Centre Special Publication 4:71
Maibam B, Gerdes A, Srinivasan R, Goswami JN (2017) U–Pb and Lu–Hf systematics of zircons from Sargur metasediments, Dharwar Craton, Southern India: new insights on the provenance and crustal evolution. Curr Sci https://doi.org/10.18520/cs/v113/i07/1394-1402
Manikyamba C, Ganguly S, Santosh M, Subramanyam KSV (2017) Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment. Gond Res 50:38–66. https://doi.org/10.1016/j.gr.2017.06.005
Maya JM, Bhutani R, Balakrishnan S, Rajee Sandhya S (2017) Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: implications for early mantle heterogeneity. Geosci Front 8(3):467–481. https://doi.org/10.1016/j.gsf.2016.03.007
McMenamin MA, McMenamin DLS (1990) The emergence of animals the Cambrian Breakthrough. In The Emergence of Animals the Cambrian Breakthrough. Columbia University Press. https://doi.org/10.7312/mcme93416
Meen JK, Rogers JJ, Fullagar PD (1992) Lead isotopic compositions of the Western Dharwar Craton, southern India: evidence for distinct Middle Archean terranes in a Late Archean craton. Geochim Cosmochim Acta 56(6):2455–2470. https://doi.org/10.1016/0016-7037(92)90202-T
Meert JG, Van Der Voo R (1997) The assembly of Gondwana 800–550 Ma. J Geodynam 23(3–4):223–235. https://doi.org/10.1016/S0264-3707(96)00046-4
Meißner B, Deters P, Srikantappa C, Köhler H (2002) Geochronological evolution of the Moyar, Bhavani and Palghat shear zones of Southern India: implications for east Gondwana correlations. Precamb Res 114(1–2):149–175. https://doi.org/10.1016/S0301-9268(01)00222-4
Merdith AS, Collins AS, Williams SA, Pisarevsky S, Foden JD, Archibald DB, Blades ML, Alessio BL, Armistead S, Plavsa D, Clark C, Müller RD (2017) A full-plate global reconstruction of the Neoproterozoic. Gond Res 50:84–134. https://doi.org/10.1016/j.gr.2017.04.001
Monrad JR (1983) Evolution of sialic terranes in the vicinity of Holenarasipur belt, Hassan district, Karnataka, India. Mem Geol Soc India 4:343–365
Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131(1–4):37–53. https://doi.org/10.1016/0009-2541(96)00024-1
Moores EM (1991) Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology 19(5):425–428. https://doi.org/10.1130/0091-7613(1991)019%3C0425:SUSEAS%3E2.3.CO;2
Mukhopadhyay D (1986) Structural pattern in the Dharwar craton. J Geol 94(2):167–186. https://doi.org/10.1086/629021
Naganjaneyulu K, Santosh M (2011) Crustal architecture beneath Madurai Block, southern India deduced from magnetotelluric studies: implications for subduction–accretion tectonics associated with Gondwana assembly. J Asian Earth Sci 40(1):132–143. https://doi.org/10.1016/j.jseaes.2010.08.014
Naha K, Chatterjee AK (1982) Axial plane folding in the Bababudan hill ranges of Karnataka. Ind J Earth Sci 9:37–43
Naha K, Srinivasan R (1996) Nature of the Moyar and Bhavani shear zones, with a note on its implication on the tectonics of the Southern Indian Precambrian shield. Proc Indian Acad Sci Earth Planet Sci 105(2):173–189. https://doi.org/10.1007/BF02876012
Naha K, Srinivasan R, Naqvi SM (1986) Structural unity in the early Precambrian Dharwar tectonic province, Peninsular India. Quart J Geol Min Metal Soc Ind 58:219–243
Naha K, Srinivasan R, Jayaram S (1990) Structural evolution of the peninsular gneiss—An early Precambrian migmatitic complex from South India. Geol Rundsch 79(1):99–109. https://doi.org/10.1007/BF01830449
Naha K, Srinivasan R, Jayaram S (1991) Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, Southern India. Proc Indian Acad Sci Earth Planet Sci 100(4):413–433. https://doi.org/10.1007/BF02839260
Naha K, Srinivasan R, Gopalan K, Pantulu GVC, Rao S, Vrevsky AB, Bogomolov YS (1993) The nature of the basement in the Archaean Dharwar craton of Southern India and the age of the Peninsular Gneiss. Proc Indian Acad Sci Earth Planet Sci 102(4):547–565. https://doi.org/10.1007/BF02871953
Naha K, Mukhopadhyay D, Dastidar S, Mukhopadhyay RP (1995a) Basement-cover relations between a granite gneiss body and its metasedimentary envelope: a structural study from the Early Precambrian Dharwar tectonic province, Southern India. Precamb Res 72(3–4):283–299. https://doi.org/10.1016/0301-9268(94)00093-7
Naha K, Rai Choudhuri A, Ranjan V, Srinivasan R (1995b) Superposed folding in the Honakere arm of the Chitradurga-Karighatta schist belt in the Dharwar tectonic province, southern India, and its bearing on the Sargur-Dharwar relation. Proc Indian Acad Sci Earth Planet Sci 104(3):327–347. https://doi.org/10.1007/BF02843401
Nair MM, Vidyadharan KT, Pawar SD, Sukumaran PV, Murthy YGK (1975) The structural and stratigraphic relationships of the schistose rocks and associated igneous rocks of the Tellichery-Manantoddy area, Cannanore district, Kerala. Indian Minerals 16:89–100
Narayanaswamy S (1970) Tectonic setting and manifestation of the upper mantle in the Precambrian rocks of south India. In Proc. Symposium on the Upper Mantle Project, NGRI, Hyderabad 377‒403
Nasipuri P, Corfu F, Bhattacharya A (2018) Eastern Ghats Province (India)–Rayner Complex (Antarctica) accretion: Timing the event. Lithosphere 10:523–529. https://doi.org/10.1130/L703.1
Nedelec A, Ralison B, Bouchez JL, Gregoire V (2000) Structure and metamorphism of the granitic basement around Antananarivo’ A key to the Pan-African history central Madagascar and its Gondwana connections. Tectonics 19:997–1020. https://doi.org/10.1029/2000TC900001
Nutman AP, Chadwick B, Ramakrishnan M, Viswanatha MN (1992) SHRIMP U-Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, Southern India. J Geol Soc India 39(5):367–374
Nutman AP, Chadwick B, Krishna Rao B, Vasudev VN (1996) SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur schist belt, Karnataka. J Geol Soc India 47(2):153–164
Peucat JJ, Vidal P, Bernard-Griffiths J, Condie KC (1989) Sr, Nd, and Pb isotopic systematics in the Archean low-to high-grade transition zone of Southern India: syn-accretion vs. post-accretion granulites. J Geol 97(5):537–549. https://doi.org/10.1086/629333
Peucat JJ, Mahabaleswar B, Jayananda M (1993) Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area); comparison with older Peninsular gneisses from the Gorur-Hassan area. J Metamorph Geol 11(6):879–888. https://doi.org/10.1111/j.1525-1314.1993.tb00197.x
Peucat JJ, Bouhallier H, Fanning CM, Jayananda M (1995) Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, South India). J Geol 103(6):701–710. https://doi.org/10.1086/629789
Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette JL (2013) The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains. Precamb Res 227:4–28. https://doi.org/10.1016/j.precamres.2012.06.009
Pichamuthu CS (1960) Charnockite in the making. Nature 188:135–136. https://doi.org/10.1038/188135a0
Pillay KR, Bhutia SP (2004) Thematic studies of Vengad formation and associated acid and basic emplacements in the vicinity of Bavali Tectonic Zone, Kannur and Wayanad districts, North Kerala. Geological Survey of India Report, Code no. STM/SR/KRL/2002/001
Pillay KR (2010) Thematic studies of the Wayanad supracrustals and associated rocks near the western termination of the Moyar Shear Zone in Sulthan Bathery area, Wayanad district, Kerala. Geological Survey of India Report. Code No. STM/SR/KRL/2007/069
Pisarevsky SA, Wingate MT, Powell CM, Johnson S, Evans DA (2003) Models of Rodinia assembly and fragmentation. Geol Soc Spec Publ 206(1):35–55. https://doi.org/10.1144/GSL.SP.2003.206.01.04
Plavsa D, Collins AS, Foden JF, Kropinski L, Santosh M, Chetty TRK, Clark C (2012) Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precamb Res 198:77–93. https://doi.org/10.1016/j.precamres.2011.12.013
Plavsa D, Collins AS, Payne JL, Foden JD, Clark C, Santosh M (2014) Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Geol Soc Am Bull 126(5–6):791–812. https://doi.org/10.1130/B30977.1
Plavsa D, Collins AS, Foden JD, Clark C (2015) The evolution of a Gondwanan collisional orogen: a structural and geochronological appraisal from the Southern Granulite Terrane, South India. Tectonics 34(5):820–857. https://doi.org/10.1002/2014TC003706
Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64(19):3283–3297. https://doi.org/10.1016/S0016-7037(00)00433-6
Prabhakar N (2013) Resolving poly-metamorphic Paleoarchean ages by chemical dating of monazites using multi-spectrometer U, Pb and Th analyses and sub-counting methodology. Chem Geol 347:255–270. https://doi.org/10.1016/j.chemgeo.2013.04.012
Praharaj P, Rekha S, Bhattacharya A (2021) Structure and chronology across the Achankovil terrain boundary shear zone system (South India), and its Madagascar connection in the Gondwanaland. Int J Earth Sci 110:1545–1573. https://doi.org/10.1007/s00531-021-02029
Pratheesh P, Prasannakumar V, Praveen KR (2013) Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India. Geosci Front 4(1):113–122. https://doi.org/10.1016/j.gsf.2012.04.004
Praveen MN, Santosh M, Yang QY, Zhang ZC, Huang H, Singanenjam S, Sajinkumar KS (2014) Zircon U-Pb geochronology and Hf isotope of felsic volcanics from Attappadi, southern India: implications for Neoarchean convergent margin tectonics. Gond Res 26(3–4):907–924. https://doi.org/10.1016/j.gr.2013.08.004
Pyle JM, Spear FS, Wark DA, Daniel CG, Strom LC (2005) Contributions to precision and accuracy of monazite microprobe ages. Am Mineral 90:547–577. https://doi.org/10.2138/am.2005.1340
Radhakrishna T, Balasubramonian G, Joseph M, Krishnendu NR (2004) Mantle processes and geodynamics: inferences from mafic dykes of South India. Earth System Science and Natural Resources Management, CESS Silver Jubilee Compendium 3‒25
Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94(2):145–166. https://doi.org/10.1086/629020
Raith M, Srikantappa C, Buhl D, Koehler H (1999) The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precamb Res 98(1–2):129–150. https://doi.org/10.1016/S0301-9268(99)00045-5
Raith M, Stahle HJ, Hoernes S (1988) Kabbaldurga-type charnockitization: a local phenomenon in the granulite to amphibolite grade transition zone. In Workshop on the Deep Continental Crust of South India
Raith M, Srikantappa C, Ashamanjari KG, Spiering B (1990) The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism. Granulites and Crustal Evolution 339‒365. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_17
Rajesh HM, Santosh M, Yoshida M (1998) Dextral Pan-African shear along the southwestern edge of the Achankovil Shear Belt, South India: constraints on Gondwana reconstructions: a discussion. J Geol 106(1):105–114. https://doi.org/10.1086/515998
Ramakrishnan M, Vaidyanathan R (2008) Geology of India. Geol Soc India 1:556
Ranjan S, Upadhyay D, Abhinay K, Srikantappa C (2020) Paleoarchean and Neoarchean Tonalite–Trondhjemite–Granodiorite (TTG) and granite magmatism in the Western Dharwar Craton, Southern India: Implications for Archean continental growth and geodynamics. Precamb Res 340:105630. https://doi.org/10.1016/j.precamres.2020.105630
Ranjan S, Upadhyay D, Srikantappa C (2022) Eoarchean to Neoarchean crustal evolution of the Western Dharwar Craton, southern India: Clues from U-Pb-Hf isotope composition of detrital zircon. Precamb Res 371:106559. https://doi.org/10.1016/j.precamres.2022.106559
Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154:675–689. https://doi.org/10.1007/s00410-007-0216-6
Ratheesh-Kumar RT, Santosh M, Yang QY, Ishwar-Kumar C, Chen NS, Sajeev K (2016) Archean tectonics and crustal evolution of the Biligiri Rangan Block, Southern India. Precamb Res 275:406–428. https://doi.org/10.1016/j.precamres.2016.01.022
Ratheesh-Kumar RT, Windley BF, Xiao WJ, Jia XL, Mohanty DP, Zeba-Nezrin FK (2019) Early growth of the Indian lithosphere: Implications from the assembly of the Dharwar Craton and adjacent granulite blocks, Southern India. Precamb Res 336:105491. https://doi.org/10.1016/j.precamres.2019.105491
Rekha S, Bhattacharya A (2014) Paleoproterozoic/Mesopro-terozoic tectonism in the northern fringe of the Western Dharwar Craton (India): its relevance to Gondwanaland and Columbia supercontinent reconstructions. Tectonics 33:552–580. https://doi.org/10.1002/2013TC003335
Rekha S, Viswanath TA, Bhattacharya A, Prabhakar N (2013) Meso/Neoarchean crustal domains along the North Konkan Coast, Western India: the Western Dharwar Craton and the Antongil-Masora Block (NE Madagascar) connection. Precamb Res 233:316–336. https://doi.org/10.1016/j.precamres.2013.05.008
Renjith ML, Santosh M, Li T, Satyanarayanan M, Korakoppa MM, Tsunogae T, Charan SN (2016) Zircon U-Pb age, Lu–Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, Southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift. J Asian Earth Sci 115:321–344. https://doi.org/10.1016/j.jseaes.2015.10.001
Rollinson HR, Windley BF, Ramakrishnan M (1981) Contrasting high and intermediate pressures of metamorphism in the Archaean Sargur Schists of Southern India. Contrib Mineral Petrol 76(4):420–429. https://doi.org/10.1007/BF00371484
Sacks PE, Nambiar CG, Walters LJ (1997) Dextral Pan-African shear along the Southwestern edge of the Achankovil Shear Belt, South India: constraints on Gondwana reconstructions. J Geol 105(2):275–284. https://doi.org/10.1086/515920
Samuel VO, Santosh M, Liu S, Wang W, Sajeev K (2014) Neoarchean continental growth through arc magmatism in the Nilgiri Block, Southern India. Precamb Res 245:146–173. https://doi.org/10.1016/j.precamres.2014.02.002
Samuel VO, Sajeev K, Hokada T, Horie K, Itaya T (2015) Neoarchean arc magmatism followed by high-temperature, high-pressure metamorphism in the Nilgiri Block, Southern India. Tectonophysics 662:109–124. https://doi.org/10.1016/j.tecto.2015.06.035
Samuel VO, Santosh M, Yang QY, Sajeev K (2016) Geochemistry and zircon geochronology of the Neoarchean volcano-sedimentary sequence along the northern margin of the Nilgiri Block, Southern India. Lithos 263:257–273. https://doi.org/10.1016/j.lithos.2016.01.027
Samuel VO, Kwon S, Santosh M, Sajeev K (2018) Garnet pyroxenite from Nilgiri Block, Southern India: Vestiges of a Neoarchean volcanic arc. Lithos 310:120–135. https://doi.org/10.1016/j.lithos.2018.04.009
Santosh M, Iyer SS, Vasconcellos MBA, Enzweiler J (1989) Late Precambrian alkaline plutons in Southwest India: geochronologic and rare-earth element constraints on Pan-African magmatism. Lithos 24(1):65–79. https://doi.org/10.1016/0024-4937(89)90016-9
Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in the Southern India. Gond Res 16:321–341. https://doi.org/10.1016/j.gr.2008.12.012
Santosh M, Xiao WJ, Tsunogae T, Chetty TRK, Yellappa T (2012) The Neoproterozoic subduction complex in Southern India: SIMS zircon U-Pb ages and implications for Gondwana assembly. Precamb Res 192:190–208. https://doi.org/10.1016/j.precamres.2011.10.025
Santosh M, Yang QY, Ram Mohan M, Tsunogae T, Shaji E, Satyanarayanan M (2014) Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu–Hf isotopes. Lithos 208–209:430–445. https://doi.org/10.1016/j.lithos.2014.09.016
Santosh M, Yang QY, Shaji E, Tsunogae T, Mohan MR, Satyanarayanan M (2015) An exotic Mesoarchean microcontinent: the Coorg block, Southern India. Gond Res 27(1):165–195. https://doi.org/10.1016/j.gr.2013.10.005
Santosh M, Yang QY, Shaji E, Mohan MR, Tsunogae T, Satyanarayanan M (2016) Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gond Res 29(1):105–135. https://doi.org/10.1016/j.gr.2014.11.003
Santosh M, Hu C-N, He X-F, Li S-S, Tsunogae T, Shaji E, Indu G (2017) Neoproterozoic arc magmatism in the Southern Madurai Block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana. Gond Res 45:1–42. https://doi.org/10.1016/j.gr.2016.12.009
Santosh M, He XF, Waterton P, Szilas K, Pearson DG (2020) Chromitites from an Archean layered intrusion in the Western Dharwar Craton, Southern India. Lithos 376:105772. https://doi.org/10.1016/j.lithos.2020.105772
Sarangi S, Gopalan K, Srinivasan R (2007) Small scale sampling for Pb–Pb dating of marbles: example from the Sargur supracrustal rocks, Dharwar Craton, South India. Precamb Res 152(1–2):83–91. https://doi.org/10.1016/j.precamres.2006.10.001
Sarma DS, Fletcher IR, Rasmussen B, McNaughton NJ, Ram Mohan M, Groves DI (2011) Archaean gold mineralization synchronous with late cratonization of the Western Dharwar Craton India: 2.52 Ga U-Pb ages of hydrothermal monazite and xenotime in gold deposits. Miner Deposita 46:273–288. https://doi.org/10.1007/s00126-010-0326-3
Sato K, Santosh M, Tsunogae T, Chetty TRK, Hirata T (2011) Subduction–accretion–collision history along the Gondwana suture in southern India: a laser ablation ICP-MS study of zircon chronology. J Asian Earth Sci 40(1):162–171. https://doi.org/10.1016/j.jseaes.2010.08.008
Sengupta P, Raith MM, Kooijman E, Talukdar M, Chowdhury P, Sanyal S, Mukhopadhyay D (2015) Chapter 20 Provenance, timing of sedimentation and metamorphism of metasedimentary rock suites from the Southern Granulite Terrane, India. Geol Soc London Mem 43(1):297–308. https://doi.org/10.1144/M43.20
Sengupta S, Ghosh SK (2004) Analysis of transpressional deformation from geometrical evolution of mesoscopic structures from Phulad shear zone, Rajasthan, India. J Str Geol 26:1961–1976. https://doi.org/10.1016/j.jsg.2004.05.002
Sequeira N, Bhattacharya A, Bell E (2021) The ~1.4 Ga A-type granitoids in the “Chottanagpur crustal block” (India), and its relocation from Columbia to Rodinia? Geosci Front. https://doi.org/10.1016/j.gsf.2020.12.017
Sequeira N, Bhattacharya A (2021) Early Neoproterozoic accretion at the Northern margin of the Chottanagpur Gneiss Complex, Eastern India. Tectonics. https://doi.org/10.1029/2020TC006613
Shaji E, Santosh M, He XF, Fan HR, Dev SD, Yang KF, Thangal NK, Pradeepkumar AP (2014) Convergent margin processes during Archean-Proterozoic transition in southern India: Geochemistry and zircon U-Pb geochronology of gold-bearing amphibolites, associated metagabbros, and TTG gneisses from Nilambur. Precamb Res 250:68–96. https://doi.org/10.1016/j.precamres.2014.05.021
Shellnutt JG, Zhou M-F (2008) Permian, rifting related fayalite syenite in the Panxi region, SW China. Lithos 101:54–73. https://doi.org/10.1016/j.lithos.2007.07.007
Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite. Chem Geol 266:218–230. https://doi.org/10.1016/j.chemgeo.2009.06.007
Srikantappa C (1993) High-pressure charnockites of the Nilgiri hills, Southern India. Mem Geol Soc India 25:95–110
Srikantappa C, Raith M, Ashamanjari KG, Ackermand D (1986) Pyroxenites and gabbroic rocks from the Nilgiri granulite terrane, Southern India. Indian Miner 27:62–83
Srikantappa C (1996) The Nilgiri granulites. The Archaean and Proterozoic terrain in Southern India within East Gondwana (eds) Santhosh M and Yoshida M, Gond Res Group Mem 3:185‒222
Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Ann Rev Earth Planet Sci 22:319–351. https://doi.org/10.1146/annurev.ea.22.050194.001535
Stroh PT, Marwad JR, Fullagar PO, Naqvil SM, Hussain SM, Rogers JJW (1983) 3000 My old Halekote trondhjemite: a record of stabilisation of the Dharwar craton. Geol Soc India Mem 4:365–376
Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405. https://doi.org/10.1016/0012-821X(94)90158-9
Swami Nath J, Ramakrishnan M (1981) Early Precambrian supracrustals of Southern Karnataka. Mem Geol Soc India 112:350
Taylor PN, Chadwick B, Moorbath S, Ramakrishnan M, Viswanatha MN (1984) Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archaean evolution of the Karnataka craton. Precamb Res 23:349–375. https://doi.org/10.1016/0301-9268(84)90050-0
Teale W, Collins AS, Foden J, Payne JL, Plavsa D, Chetty TRK, Santosh M, Fanning M (2011) Cryogenian (ca. 830 Ma) mafic magmatism and metamorphism in the northern Madurai Block, Southern India: a magmatic link between Sri Lanka and Madagascar. J Asian Earth Sci 42:223–233. https://doi.org/10.1016/j.jseaes.2011.04.006
Tikoff B, Greene D (2007) Stretching lineations in trans-pressional shear zones: an example from the Sierra Nevada Batholith, California. J Str Geol 19:29–39. https://doi.org/10.1016/S0191-8141(96)00056-9
Trendall AF, De Laeter JR, Nelson DR, Mukhopadhyay D (1997) A precise zircon U-Pb age for the base of the BIF of the Mulaingiri Formation, (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton. J Geol Soc India 50(2):161–170
Tubosun IA, Lancelot JR, Rahaman MA, Ocan O (1984) U-Pb Pan-African ages of two charnockite-granite associations from Southwestern Nigeria. Contrib Mineral Petrol 88(1):188–195. https://doi.org/10.1007/BF00371422
Wang JY, Santosh M (2019) Eoarchean to Mesoarchean crustal evolution in the Dharwar craton, India: evidence from detrital zircon U-Pb and Hf isotopes. Gond Res 72:1–14. https://doi.org/10.1016/j.gr.2019.02.006
Williams ML, Jercinovic MJ, Terry MP (1999) Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories. Geology 27:1023–1026. https://doi.org/10.1130/00917613(1999)027%3C1023:AMADOM%3E2.3.CO;2
Yang QY, Santosh M, Pradeepkumar AP, Shaji E, Prasanth RS, Dev SD (2015) Crustal evolution in the western margin of the Nilgiri Block, southern India: Insights from zircon U-Pb and Lu–Hf data on Neoarchean magmatic suite. J Asian Earth Sci 113:766–777. https://doi.org/10.1016/j.jseaes.2015.02.023
Yang QY, Santosh M, Ganguly S, Arun-Gokul J, Dhanil Dev SG, Tsunogae T, Shaji E, Dong Y, Manikyamba C (2016) Melt-fluid infiltration in Archean suprasubduction zone mantle wedge: Evidence from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes from Wynad, Southern India. Precamb Res 281:101–127. https://doi.org/10.1016/j.precamres.2016.05.015
Yano M, Tsunogae T, Santosh M, Yang QY, Shaji E, Takamura Y (2016) Ultrahigh-temperature metagabbros from Wynad: Implications for Paleoproterozoic hot orogen in the Moyar Suture Zone, Southern India. J Asian Earth Sci 130:139–154. https://doi.org/10.1016/j.jseaes.2016.04.024
Yellappa T, Santosh M, Chetty TRK, Kwon S, Park C, Nagesh P, Mohanty DP, Venkatasivappa V (2012) A Neoarchean dismembered ophiolite complex from southern India: geochemical and geochronological constraints on its suprasubduction origin. Gond Res 21(1):246–265. https://doi.org/10.1016/j.gr.2011.05.003
Yellappa T, Santosh M, Manju S (2019) The mafic–ultramafic complex of Salem, Southern India: An analogue for Neoproterozoic Alaskan-type complex. Geol J 54(5):3017–3040. https://doi.org/10.1002/gj.3460
Yu B, Santosh M, Amaldev T, Palin RM (2021) Mesoarchean (ultra)-high temperature and high-pressure metamorphism along a microblock suture: Evidence from Earth’s oldest khondalites in Southern India. Gond Res 91:129–151. https://doi.org/10.1016/j.gr.2020.12.015
Zhang SB, Wu RX, Zheng YF (2012) Neoproterozoic continental accretion in South China: geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen. Precamb Res 220:45–64. https://doi.org/10.1016/j.precamres.2012.07.010
Zhao J-X, Shirashi K, Ellis DJ, Sheraton JW (1995) Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochim Cosmochim Acta 59:1363–1382. https://doi.org/10.1016/0016-7037(95)00050-A
Zhao J-H, Zhou M-F, Zheng J-P (2013) Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China. Precamb Res 233:93–107. https://doi.org/10.1016/j.precamres.2013.04.011
Zhao Y, Zhai M, Zhang C, Sun Y, Gou L, Lu J, Sajeev K, George PM, Ao W, Hu Y, Xu X (2021) Zircon-monazite geochronology and PT evolution of the Sargur Greenstone Belt: implications for the end-Archean tectonics of the Dharwar Craton in Southern India. Precamb Res 364:106384. https://doi.org/10.1016/j.precamres.2021.106384
Zhong S, Zhang N, Li ZX, Roberts JH (2007) Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet Sci Lett 261:551–564. https://doi.org/10.1016/j.epsl.2007.07.049
Acknowledgements
This work forms part of the doctoral dissertation of MS and she is supported by NITR research fellowship. SR acknowledges the financial support provided by DST-SERB (Project code: ECR/2018/001821). AB wishes to thank the JIS University for the opportunity to be part of the work. We greatly appreciate the comments provided by three anonymous reviewers; their comments greatly helped to improve the presentation of the manuscript. We thank Prof. Ulrich Riller (Editor-in-Chief) and Prof. Karel Schulmann (Topic Editor) for editorial handling of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author(s) declare none.
Supplementary Information
Below is the link to the electronic supplementary material.
531_2023_2355_MOESM1_ESM.docx
Supplementary file1 (DOCX 19 KB) Supplementary Information 1: Compilation of the published geochronological data from the southern part of the Western Dharwar Craton, Moyar/Bavali Shear Zone and Nilgiri block
531_2023_2355_MOESM2_ESM.xlsx
Supplementary file2 (XLSX 39 KB) Supplementary Information 2: Detailed electron probe microanalysis (EPMA) data of monazites. The element oxide concentrations, chemical spot ages, and ±2σ error of spot ages in monazites (locations of monazite-dated samples in Fig. 2) obtained in this study
531_2023_2355_MOESM3_ESM.jpg
Supplementary file3 (JPG 1520 KB) Supplementary Information 3: (a) Th + Si vs ƩREE + Y + P plot of monazites analyzed in this study. (b) Enlarged view of the box in (a)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Swain, M., Rekha, S., Nanda, S. et al. The anatomy of the 750 Ma Bavali shear zone in South India: did the integration of India into East Gondwanaland initiate in the mid-Neoproterozoic?. Int J Earth Sci (Geol Rundsch) 112, 2119–2143 (2023). https://doi.org/10.1007/s00531-023-02355-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-023-02355-w