Skip to main content

Advertisement

Log in

Surface deformation and secondary effects of the January 18, 2021 (Mw 6.5) San Juan (Argentina) earthquake from remote sensing techniques

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

On January 18, 2021, a moderate earthquake (Mw 6.5) occurred ~ 45 km southwest of San Juan, a city in Central-Western Argentina, at a relatively shallow depth of ~ 20 km. The earthquake caused damage to the environment and infrastructure in the affected area, which is home to ~ 600,000 residents. To assess ground deformation, identify the seismogenic source, and evaluate the extent of secondary effects, we utilized Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques in combination with Sentinel-2 visible and infrared imagery, as well as field data. DInSAR results suggested centimeter-scale ground deformation around the epicenter, off-fault deformation linked to regional structures, and site effects, such as liquefaction and landslides. By combining the values extracted from a 3-year-long PSI and SBAS time series, we estimated a vertical displacement of approximately 4.5 cm near the epicenter. Off-fault deformation involves some degree of ground settling on top of a blind or buried section of the Papagallos fault system, the reactivation of a section of the Rinconada fault system, and liquefaction and ground settling processes in the Tulum Valley. Rockfalls were distributed throughout a geologically diverse terrain and along a NW swath, with their occurrence controlled by the shaking intensity. The total area affected by secondary effects was ~ 3800 km2. Based on the available focal mechanism solutions and the distribution of environmental damage, we propose a left-lateral strike-slip displacement in a blind NW-striking fault, although different interpretations are discussed. Finally, we estimated the epicentral depth from SBAS time series Bayesian Inversion and from differential travel times pP-P, obtaining a depth of 20–25 km.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The Earthquake catalogs from International Seismological Centre (ISC) are publicly available in the ISC Bulletin repository at https://doi.org/10.31905/D808B830. The Sentinel 1 images used for the DInSAR processing are publicly available in the Copernicus Open Access Hub repository at https://scihub.copernicus.eu/dhus/#/home. The rest of the data that supports the findings of this study are available on request from the corresponding author.

References

  • Acosta G, Rodríguez A, Euillades P, Euillades L, Ruiz F, Rosell P, Sanchez M, Leiva F, Ariza J, García H (2021) Detection of active landslides by DInSAR in Andean Precordillera of San Juan, Argentina. J S Am Earth Sci 108:103205. https://doi.org/10.1016/j.jsames.2021.103205

    Article  Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude, Tectonics 9(4): 789–809. https://doi.org/10.1029/TC009i004p00789

  • Alcácer Sánchez JM, Rothis LM, Haro F, Perucca LP, Miranda S, Vargas N (2020) Geophysical analysis in a quaternary compressive environment controlling the emplacement of travertine, eastern piedmont of Argentine Precordillera. J S Am Earth Sci 98:102432. https://doi.org/10.1016/j.jsames.2019.102432

    Article  Google Scholar 

  • Alvarado P, Beck S (2006) Source characterization of the San Juan (Argentina) crustal earthquakes of 15 January 1944 (Mw 7.0) and 11 June 1952 (Mw 6.8). Earth Planet Sci Lett 243:615–631. https://doi.org/10.1016/j.epsl.2006.01.015

    Article  Google Scholar 

  • Ammirati JB, Mackaman-Lofland C, Zekcra M, Gobron K (2022) Stress transmission along mid-crustal faults highlighted by the 2021 Mw 6.5 San Juan (Argentina) earthquake. Nat Sci Rep 12:17939. https://doi.org/10.1038/s41598-022-22752-6

    Article  Google Scholar 

  • Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys J Int 171:419–434. https://doi.org/10.1111/j.1365-246X.2007.03483.x

    Article  Google Scholar 

  • Astort A, Walter T, Ruiz F, Sagripanti L, Naciff A, Acosta G, Folguera A (2019) Unrest at Domuyo Volcano, Argentina, detected by geophysical and geodetic data and morphometric analysis. Remote Sens 11(18):2175. https://doi.org/10.3390/rs11182175

    Article  Google Scholar 

  • Audemard F, Perucca LP, Pantano A, Avila C, Onorato M, Vargas H, Alvarado P, Viete H (2016) Holocene compression in the Acequión valley (Andes Precordillera, San Juan Province, Argentina): geomorphic, tectonic, and paleoseismic evidence. J S Am Earth Sci 67:140–157. https://doi.org/10.1016/j.jsames.2016.02.005

    Article  Google Scholar 

  • Bagnardi M, Hooper A (2017) GBIS (Geodetic Bayesian Inversion Software): rapid inversion of InSAR and GNSS data to estimate surface deformation source parameters and uncertainties. AGU fall meeting abstracts, 2017. http://ui.adsabs.harvard.edu/abs/2017AGUFM.G23A0881B/abstract

  • Baldis BA, Uliarte E, Vaca A (1979) Análisis estructural de la comarca sísmica de San Juan. Rev Asoc Geol Argentina 34(4):294–310

    Google Scholar 

  • Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4(11):686–692. https://doi.org/10.1130/0091-7613(1976)%3c686:SDOEAS%3e2.0.CO;2

    Article  Google Scholar 

  • Bastías H, Weidmann N, Pérez M (1984) Dos zonas de fallamiento Plio-Cuaternario en la Precordillera de San Juan. In: Proceedings 9° Congreso Geológico Argentino: Bariloche, Río Negro, Asociación Geológica Argentina, pp 329–341

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. In IEEE Transactions on Geoscience and Remote Sensing 40(11): 2375-2383. https://doi.org/10.1109/TGRS.2002.803792

  • Blanc PA (2019) Análisis geomorfológico y paleoambiental de la depresión tectónica de Ullum-Zonda, Provincia de San Juan. PhD thesis. Universidad Nacional de San Juan, p 149. https://ri.conicet.gov.ar/handle/11336/84605

  • Blanc PA, Perucca LP (2017) Tectonic and climatic controls on the late Pleistocene to Holocene evolution of Paleolake Ullum-Zonda in the Precordillera of the Central Andes, Argentina. Quatern Res 88:248–264. https://doi.org/10.1017/qua.2017.50

    Article  Google Scholar 

  • Blanc PA, Tejada F, Perucca LP, Espejo K, Lara Ferrero G, Vargas N (2020) Morphotectonic analysis of two axial tributary basins of the San Juan River controlled by the Precordillera fold and thrust belt, Central Andes of Argentina. J S Am Earth Sci 98:102441. https://doi.org/10.1016/j.jsames.2019.102441

    Article  Google Scholar 

  • Bookhagen B, Strecker MR, Weiss JR, Alonso RN (2020) Active surface deformation in the south-central Andes revealed by multiple-sensor InSAR, GNSS and field observations. 22nd EGU General Assembly, held online 4-8 May, 2020, id.13209. https://doi.org/10.5194/egusphere-egu2020-13209

  • Braun A (2021) Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open Geosciences 13(1):532–569. https://doi.org/10.1515/geo-2020-0246

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529. https://doi.org/10.1029/92JB00493

    Article  Google Scholar 

  • Cardó R, Díaz I, Bordonaro OL, Cardinali A (2020) Hoja Geológica 3169–4. Los Berros. Hoja Geológica 3169–34, Los Berros. Provincia de San Juan. Programa Nacional de Cartas Geológicas de la República Argentina 1:100.000. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín no 397, Buenos Aires, 36 pp

  • Castro de Machuca BC, Perucca LP (2015) Fault-related carbonate breccia dykes in the La Chilca area, Eastern Precordillera, San Juan, Argentina. J S Am Earth Sci 58:100–110. https://doi.org/10.1016/j.jsames.2014.11.011

    Article  Google Scholar 

  • Chen X, Sun Q, Hu J (2018) Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm. Appl Sci 8(11):2206. https://doi.org/10.3390/app8112206

    Article  Google Scholar 

  • Colavitto B, Alcácer JM, Rothis LM, Haro F, Blanc PA, Onorato MR, Perucca LP (2021) Análisis paleosismológico de la falla Acequión mediante perfiles topográficos de escarpa (Precordillera de San Juan, Argentina). Bol Soc Geol Mexicana 73(2):A090121

    Article  Google Scholar 

  • Cortés JM, Casa A, Pasini M, Yamín M, Terrizzano C (2006) Fajas oblicuas de deformación neotectónica en Precordillera y Cordillera Frontal (31°30’-33°30’): Controles Paleotectónicos. Rev Asoc Geol Argentina 61:639–646

    Google Scholar 

  • Costa C (2009) Falla La Rinconada (AR-22). In: Proyecto Multinacional Andino (PMA), 2009. Atlas de deformaciones cuaternarias de los Andes, SERNAGEOMIN, Publicación Geológica Multinacional vol 7, pp 104–110

  • Costa C, Rockwell T, Paredes J, Gardini C (1999) Quaternary deformation and seismic hazard at the Andean Orogenic Front (31°–33°, Argentina): a paleoseismological perspective, presented at the 4th international symposium on Andean geodynamics, pp 187–191 (extended abstracts)

  • Costa C, Audemard F, Bezerra F, Lavenu AA, Machette M, París G (2006) An overview of the main quaternary deformation of South America. Rev Asoc Geol Argentina 61:461–479

    Google Scholar 

  • Costa C, Alvarado A, Audemard F, Audin L, Benavente C, Bezerra F, Cembrano J, González G, López M, Minaya E, Santibañez I, Garcia J, Arcila M, Pagani M, Pérez I, Delgado F, Paolini M, Garro H (2020) Hazardous faults of South America; compilation and overview. J S Am Earth Sci 104:102837. https://doi.org/10.1016/j.jsames.2020.102837

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

    Article  Google Scholar 

  • Delgado F (2021) Rhyolitic volcano dynamics in the Southern Andes: contributions from 17 years of InSAR observations at Cordon Caulle from 2003 to 2020. J S Am Earth Sci Spec Issue New Adv SAR Interferom S Am. https://doi.org/10.1016/j.jsames.2020.102841

    Article  Google Scholar 

  • Delgado Blasco JM, Foumelis M, Stewart C, Hooper A (2019) Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sens. https://doi.org/10.3390/rs11020129

    Article  Google Scholar 

  • Departamento Hidráulica (2021) Pronóstico hídrico elaborado por el equipo de Estudios Hidrológicos del Departamento de Hidráulica, para el período octubre 2021 a septiembre 2022 (unpublished report).

  • Esper Angillieri MY, Perucca LP (2013) Mass movement in Cordón de las Osamentas, de La Flecha river basin, San Juan, Argentina. Quatern Int 301:150–157. https://doi.org/10.1016/j.quaint.2013.03.009

    Article  Google Scholar 

  • Esper Angillieri MY, Perucca LP, Rothis LM, Tapia Baldis C, Vargas N (2014) Morphometric characterization of a large-scale rockslide, and probable seismogenic origin of landslides on the western flank of Central Precordillera, Argentina. Quatern Int 352:92–99. https://doi.org/10.1016/j.quaint.2014.04.058

    Article  Google Scholar 

  • Euillades P, Euillades L, Blanco L, Vélez ML, Grosse P, Sosa G (2017) Co-eruptive subsidence and post-eruptive uplift associated with the 2011–2012 eruption of Puyehue-Cordón Caulle, Chile, revealed by DInSAR. J Volcanol Geoth Res 344:257–269. https://doi.org/10.1016/j.jvolgeores.2017.06.023

    Article  Google Scholar 

  • Fazzito SY, Cortés JM, Rapalini AE, Terrizzano CM (2013) The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central-Western Argentina: integrating resistivity surveys with structural and geomorphological data. Int J Earth Sci 102:1447–1466. https://doi.org/10.1007/s00531-013-0873-9

    Article  Google Scholar 

  • Ginesta Torcivia C, Rios N, Cortez Taillant V, Tejada Recabarren F, Esper Angillieri MY (2022) Estudio preliminar de caídas de rocas y factores condicionantes asociados al sismo 6.4 Mw. de enero de 2021, San Juan Argentina. Rev Asoc Geol Argentina 79. https://revista.geologica.org.ar/raga/article/view/1464

  • Goorabi A (2020) Detection of landslide induced by large earthquake using InSAR coherence techniques—Northwest Zagros, Iran. Egypt J Remote Sens Space Sci 23(2):195–205. https://doi.org/10.1016/j.ejrs.2019.04.002

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Havskov J, Ottemöller L (2010) Routine data processing in earthquake seismology: with sample data, exercises and software. Springer, Berlin

    Book  Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett. https://doi.org/10.1029/2008gl034654

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett. https://doi.org/10.1029/2004gl021737

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407. https://doi.org/10.1029/2006JB004763

    Article  Google Scholar 

  • Höser T (2018) Analysing the capabilities and limitations of InSAR using Sentinel-1 data for landslide detection and monitoring. https://doi.org/10.13140/RG.2.2.35085.59362

  • Instituto Nacional de Prevención Sísmica (INPRES) (2021). https://www.inpres.gob.ar. Accessed Sept 2023

  • International Seismological Centre (ISC) (2023) On-line bulletin. https://doi.org/10.31905/D808B830. Accessed Aug 2023

  • Jan J-C, Huang H-H, Wu Y-M, Chen C-C, Lin C-H (2018) Near real-time estimates on earthquake rupture directivity using near-field ground motion data from a dense low-cost seismic network. Geophys Res Lett 45:7496–7503. https://doi.org/10.1029/2018GL078262

    Article  Google Scholar 

  • Japas MS (1998) Aporte del análisis de fábrica deformacional al estudio de la faja orogénica andina. Homenaje al Dr. Arturo J. Amos. Rev Asoc Geol Argentina 53:15

    Google Scholar 

  • Japas MS, Salvarredi J, Kleiman LE (2005) Self-similar behaviour of triassic rifting in San Rafael, Mendoza, Argentina. In: Pankhurst RJ, Veiga GD (eds) Gondwana 12, abstracts. Academia Nacional de Ciencias, Córdoba, Argentina, p 213

    Google Scholar 

  • Junquera S, Moreiras S, Sepúlveda S (2019) Distribution of landslides along the Andean active orogenic front (Argentinean Precordillera 31–33° S). Quatern Int. https://doi.org/10.1016/j.quaint.2019.01.030

    Article  Google Scholar 

  • Karamvasis K, Karathanassi V (2020) Performance Analysis of Open Source Time Series InSAR Methods for Deformation Monitoring over a Broader Mining Region. Remote Sensing 12(9):1380. https://doi.org/10.3390/rs12091380

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geological Society of America Special Paper 265, Boulder, Colorado, pp 113–137

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Geol Soc Am 95:406–421. https://doi.org/10.1130/0016-7606(1984)95%3c406:LCBE%3e2.0.CO;2

    Article  Google Scholar 

  • Kennett BLN (2005) Seismological tables: ak135. Research School of Earth Sciences, Australian National University, Canberra, Australia, pp 1–289

    Google Scholar 

  • Klinger Y (2010) Relation between continental strike-slip earthquake segmentation and thickness of the crust. J Geophys Res. https://doi.org/10.1029/2009JB006550

    Article  Google Scholar 

  • Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007) An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis Pure and Applied Geophysics 164(4): 637-661. https://doi.org/10.1007/s00024-007-0192-9

  • Lara Ferrero G (2015) Análisis de la Actividad Tectónica Cuaternaria en la Depresión Maradona-Bachongo (31°35’-31°52°LS), Precordillera Central. Provincia de San Juan. Unpublished PhD thesis. Universidad Nacional de San Juan, p 249

  • Lara Ferrero G, Lince Klinger F, Perucca LP, Rojo G, Vargas N, Leiva F (2017) Multiple geophysical methods examining neotectonic blind structures in the Maradona valley, Central Precordillera (Argentina). Tectonophysics 712–713:634–642. https://doi.org/10.1016/j.tecto.2017.06.021

    Article  Google Scholar 

  • Lara Ferrero G, Perucca LP, Rothis LM, Pantano A, Sáez M (2018) Quaternary tectonic activity of Maradona fault system, central Precordillera, Argentina. Andean Geol 45:145–160. https://doi.org/10.5027/andgeoV45n2-2970

    Article  Google Scholar 

  • Levina M, Horton BK, Fuentes F, Stockli DF (2014) Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31–32°S), southern central Andes, Argentina. Tectonics 33:1659–1680. https://doi.org/10.1002/2013TC003424

    Article  Google Scholar 

  • Lu C-H, Ni C-F, Chang C-P, Yen J-Y, Chuang RY (2018) Coherence difference analysis of Sentinel-1 SAR interferogram to identify earthquake-induced disasters in urban areas. Remote Sens 10(8):1318. https://doi.org/10.3390/rs10081318

    Article  Google Scholar 

  • Martos LM (1995) Análisis morfo-estructural de la faja pedemontana oriental de las sierras de Marquesado, Chica de Zonda y Pedernal: Su aplicación para prevenir riesgos geológicos. Unpublished PhD thesis. Universidad Nacional de San Juan, Argentina, p 554

  • Meigs A, Krugh WC, Schiffman C, Vergés J, Ramos VA (2006) Refolding of thin-skinned thrust sheets by active basement involved thrust faults in the eastern Precordillera of western Argentina. Rev Asoc Geol Argentina 61(4):589–603

    Google Scholar 

  • Michoud C, Baumann V, Lauknes TR, Penna I, Derron M, Jaboyedoff M (2016) Large slope deformations detection and monitoring along shores of the Potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach. Landslides 13:451–465. https://doi.org/10.1007/s10346-015-0583-4

    Article  Google Scholar 

  • Moreiras S, Banchig A (2008) Further evidences of quaternary activity of the Maradona faulting, Precordillera Central, Argentina. In: 7° International symposium on Andean geodynamics. Extended abstracts, pp 344–347

  • Nurminen F, Boncio P, Visini F, Pace B, Valentini A, Baize S, Scotti O (2020) Probability of occurrence and displacement regression of distributed surface rupturing for reverse earthquakes. Front Earth Sci 8:581605. https://doi.org/10.3389/feart.2020.581605

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154. https://doi.org/10.1785/bssa0750041135

    Article  Google Scholar 

  • Olen S, Bookhagen B (2020) Applications of SAR interferometric coherence time series: spatiotemporal dynamics of geomorphic transitions in the South-Central Andes. JGR Earth Surf. https://doi.org/10.1029/2019JF005141

    Article  Google Scholar 

  • Oriolo S, Cristallini EO, Japas MS, Yagupsky D (2015) Neogene structure of the Andean Precordillera, Argentina: insights from analogue models. Andean Geol 42:20–35. https://doi.org/10.5027/andgeoV42n1-a02

    Article  Google Scholar 

  • Ortiz A, Zambrano J (1981) La provincia geológica de Precordillera Oriental. 8° Congreso Geológico Argentino, Actas 3, pp 59–74. San Luis, Argentina

  • Palacios S, Perucca LP, Pantano A, Lara Ferrero G (2017) Propuesta metodológica para el análisis de la licuación de suelos asociada a sismos destructivos Pre andes Centrales, Argentina (31° 30’S y 68° 25’O). Anu Inst Geocien 40:55–69

    Article  Google Scholar 

  • Palacios S, Lara Guerrero G, Perucca LP (2021) Susceptibilidad a la licuación de suelos y sedimentos en el valle Ullum-Zonda (31°30’ S-68°25’ O), Precordillera, Andes Centrales, Argentina. Andean Geol 48(2):333–349. https://doi.org/10.5027/andgeov48n2-3331

    Article  Google Scholar 

  • Paredes J, Perucca LP (2000) Fallamiento cuaternario en la depresión de Matagusanos, San Juan, Argentina. Rev Asoc Geol Argentina 55:23–30

    Google Scholar 

  • Peri VG, Fazzito SY, Bello Camilletti G, Rapalini AE, Cortés JM (2017) Estudios geoeléctricos de subsuelo sobre estructuras vinculadas a la falla El Tigre, San Juan. Rev Asoc Geol Argentina 74:468–484

    Google Scholar 

  • Perucca LP (1990) Sistema de fallamiento La Dehesa-Maradona-Acequión, San Juan, Argentina. In: 11° Congreso Geológico Argentino, Actas 2. San Juan, Argentina, pp 431–434

  • Perucca LP, Paredes J (2003) Fallamiento cuaternario en la zona de La Laja y su relación con el terremoto de 1944, Departamento Albardón, San Juan, Argentina. Revista Mexicana de Ciencias Geológicas 20(1): 20–26. ISSN 1026-8774

  • Perucca LP, Esper Angillieri MY (2008) La avalancha de rocas Las Majaditas. Caracterización geométrica y posible relación con eventos paleosísmicos. Precordillera de San Juan, Argentina. Rev Esp Soc Geol Esp 21(1–2):35–47

    Google Scholar 

  • Perucca LP, Moreiras S (2006) Liquefaction phenomena associated with historical earthquakes in San Juan and Mendoza provinces, Argentina. Quatern Int 158:96–109. https://doi.org/10.1016/j.quaint.2006.05.023

    Article  Google Scholar 

  • Perucca LP, Moreiras S (2008) Indicative structures of paleoseismicity in the Acequión River valley, San Juan province, central-western Argentina. Geodin Acta 21:93–105. https://doi.org/10.3166/ga.21.93-105

    Article  Google Scholar 

  • Perucca LP, Onorato MR (2011) Fallas con actividad cuaternaria en el Corredor Tectónico Matagusanos—Maradona—Acequión entre los ríos de La Flecha y del Agua. Provincia de San Juan. Rev Asoc Geol Argentina 68:39–52

    Google Scholar 

  • Perucca LP, Paredes J (2004a) Fallamiento cuaternario en la zona de La Laja y su relación con el terremoto de 1944, Departamento Albardón, San Juan, Argentina. Rev Mexicana Cienc Geol 20:20–26

    Google Scholar 

  • Perucca LP, Paredes J (2004b) Descripción del Fallamiento Activo en la Provincia de San Juan. In: Miranda S, Herrada A, Sisterna J (eds) Tópicos de Geociencias. Un volumen de estudios sismológicos, geodésicos y geológicos en homenaje al Ing. Fernando Séptimo Volponi. San Juan, Argentina, pp 269–309

  • Perucca LP, Ruiz F (2014) New data on neotectonic contractional structures in Precordillera, south of Río de La Flecha: structural setting from gravity and magnetic data. San Juan, Argentina. J S Am Earth Sci 50:1–11. https://doi.org/10.1016/j.jsames.2013.11.006

    Article  Google Scholar 

  • Perucca LP, Vargas N (2014) Neotectónica de la provincia de San Juan, centro-oeste de Argentina. Bol Soc Geol Mexicana 66(2):291–304

    Article  Google Scholar 

  • Perucca LP, Perez A, Navarro C (2006) Fenómenos de licuefacción asociados a terremotos históricos. Su análisis en la evaluación del peligro sísmico en la Argentina. Rev Asoc Geol Argentina 61:567–578

    Google Scholar 

  • Perucca LP, Lara Ferrero G, Vargas N (2012) Nueva evidencia de actividad tectónica cuaternaria en la depresión Zonda-Maradona, Provincia de San Juan. Rev Asoc Geol Argentina 69:97–105

    Google Scholar 

  • Perucca LP, Audemard F, Pantano A, Avila C, Onorato MR, Lara Ferrero G, Esper Angillieri MY (2013) Fallas cuaternarias con vergencias opuestas entre Precordillera Central y Oriental, provincia de San Juan. Rev Asoc Geol Argentina 70(2):291–302

    Google Scholar 

  • Ramos VA, Vujovich G (2000) Hoja Geológica 3169-IV, San Juan Programa Nacional de Cartas Geológicas de la República Argentina 1: 250.000. Instituto de Geología y Recursos Minerales Servicio Geológico Minero Argentino, Buenos Aires, p 82

    Google Scholar 

  • Ramos VA, Cristallini E, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15(1):59–78. https://doi.org/10.1016/S0895-9811(02)00006-8

    Article  Google Scholar 

  • Richard A, Costa C, Giambiagi L, Moreno C, Ahumada E, Vazquez F (2019) Neotectónica del extremo austral de la falla La Rinconada, Precordillera Oriental, provincia de San Juan. Rev Asoc Geol Argentina 76:24–39

    Google Scholar 

  • Rivas C, Ortiz G, Alvarado P, Podestá M, Martin A (2019) Modern crustal seismicity in the northern Andean Precordillera, Argentina. Tectonophysics 762:144–158. https://doi.org/10.1016/j.tecto.2019.04.019

    Article  Google Scholar 

  • Rockwell T, Ragona D, Meigs A, Owen L, Costa C, Ahumada E (2014) Inferring a thrust-related earthquake history from secondary faulting: a long rupture record of La Laja fault, San Juan, Argentina. Bull Seismol Soc Am 104:269–284. https://doi.org/10.1785/0120110080

    Article  Google Scholar 

  • Rockwell T, Costa C, Meigs A, Ragona D, Owen L, Murari M, Masana E, Richard A (2022) Paleoseismology of the Marquesado-La Rinconada thrust system, Eastern Precordillera of Argentina. Front Earth Sci. https://doi.org/10.3389/feart.2022.1032357

    Article  Google Scholar 

  • Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346. https://doi.org/10.1016/S0267-7261(99)00012-3

    Article  Google Scholar 

  • Rothis LM, Perucca LP, Lara Ferrero G (2021) El terremoto del 18E en San Juan, Argentina: a 44 años del terremoto de 1977 y a 77 años del terremoto de 1944. Boletín Brackebushiano, vol 4. Geociencias y Sociedad, Asociación Geológica Argentina, pp 14–23

  • Ruiz F, Introcaso A, Nacif S, Leiva F, Gimenez M, Martínez P, Laplagne A (2011) Cambios de gravedad de origen tectónico en la transición entre las Sierras Pampeanas Occidentales y la Precordillera Sanjuanina. Rev Asoc Geol Argentina 68(4):594–605

    Google Scholar 

  • Sánchez Girino G, Ortiz G, Saez M, López L, Pérez I, Moreno M, Venerdini A, Fernández M, Alvarado P (2021) El terremoto (Mw 6.4) superficial del 18 de enero de 2021 del Cordón de las Osamentas, Precordillera Central, San Juan, Argentina. Rev Asoc Geol Argentina 78(4)

  • Siame LL, Bellier O, Sebrier M, Bourlès D, Leturmy P, Perez M, Araujo M (2002) Seismic Hazard reappraisal combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina). Geophys J Int 150:241–260. https://doi.org/10.1046/j.1365-246X.2002.01701.x

    Article  Google Scholar 

  • Siame LL, Bellier O, Sébrier M, Araujo M (2005) Deformation partitioning in flat subduction setting: case of the Andean foreland of western Argentina (28°S–33°S). Tectonics. https://doi.org/10.1029/2005tc001787

    Article  Google Scholar 

  • Siame LL, Bellier O, Sebrier M (2006) Active tectonics in the Argentine Precordillera and western Sierras Pampeanas. Rev Asoc Geol Argentina 61:604–619

    Google Scholar 

  • Smalley R Jr, Pujol J, Regnier M, Chiu JM, Chatelain JL, Isacks BL, Araujo M, Puebla N (1993) Basement seismicity beneath the Andean Precordillera thin-skinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12(1):63–76

    Article  Google Scholar 

  • Stein S, Wysession M (2003) Earthquakes. In: An introduction to seismology, earthquakes and earth structure. Blackwell Publishing Ltd., Oxford

  • Suriano J, Mardonez J, Mahoney J, Mescua J, Giambiagi L, Kimbrough D, Lossada A (2017) Uplift sequence of the Andes at 30S: insights from sedimentology and U/Pb dating of synorogenic deposits. J S Am Earth Sci 75:11–34. https://doi.org/10.1016/j.jsames.2017.01.004

    Article  Google Scholar 

  • Tapia Baldis C, Rothis LM, Perucca LP, Esper Angillieri MY, Vargas HN, Ponce D, Allis C (2018) Analysis of La Dehesa paleo-landslide. Central Pre-Andes of Argentina. J S Am Earth Sci 83:1–13. https://doi.org/10.1016/j.jsames.2018.01.011

    Article  Google Scholar 

  • Tello G, Perucca LP (1993) El sistema de fallamiento Precordillera Oriental y su relación con los sismos históricos de 1944 y 1952, San Juan, Argentina. In: 12° Congreso Geológico Argentino: Mendoza, Argentina. Asociación Geológica Argentina. Actas, pp 258–265

  • Toural-Dapoza R, Moreiras SM, Euillades P, Balbarini S (2019) Geomorphologic index validation by DINSAR technique in the Andean orogenic front (32°–33°S). Quatern Int 512:35–44. https://doi.org/10.1016/j.quaint.2019.02.033

    Article  Google Scholar 

  • USGS (February 4, 2021), PAGER-CAT Earthquake Catalog

  • Vélez ML, Euillades P, Caselli A, Blanco M, Díaz J (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geoth Res 202(1–2):117–126. https://doi.org/10.1016/j.jvolgeores.2011.01.012

    Article  Google Scholar 

  • Vélez ML, Euillades P, Blanco M, Euillades L (2015) Ground deformation between 2002 and 2013 from inSAR observations. Copahue Volcano. https://doi.org/10.1007/978-3-662-48005-2_8

    Article  Google Scholar 

  • Venerdini A, Alvarado P, Ammirati JB, Podestá M, López L, Fuentes F, Linkimer L, Beck S (2020) Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data. Tectonophysics. https://doi.org/10.1016/j.tecto.2020.228450

    Article  Google Scholar 

  • Vergés J, Ramos VA, Meigs A, Cristallini E, Bettini FH, Cortés JM (2007) Crustal wedging triggering recent deformation in the Andean thrust front between 31°S and 33°S: Sierras Pampeanas-Precordillera interaction. J Geophys Res 112:B03S15. https://doi.org/10.1029/2006JB004287

    Article  Google Scholar 

  • Wasowski J, Keefer D, Lee ChL (2011) Toward next generation of research on earthquake-induced landslides: current issues and challenges. Eng Geol 122:1–8. https://doi.org/10.1016/j.enggeo.2011.06.001

    Article  Google Scholar 

  • Yáñez G, Ranero C, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern Central Andes (32°–33.5°S): the role of the Juan Fernández ridge in the late Tertiary evolution of the margin. J Geophys Res 106:6325–6345. https://doi.org/10.1029/2000JB900337

    Article  Google Scholar 

  • Youd L, Keefer D (1994) Liquefaction during the 1977 San Juan Province, Argentina earthquake (Ms = 7.4). Eng Geol 37:211–233. https://doi.org/10.1016/0013-7952(94)90057-4

    Article  Google Scholar 

  • Zapata TR, Allmendinger R (1996) Thrust-front zone of the Precordillera, Argentina: a thick-skinned triangle zone. AAPG (am Assoc Pet Geol) Bull 80:359–381

    Google Scholar 

Download references

Acknowledgements

We thank the editor Ulrich Riller, topic editor Laura Giambiagi, and the anonymous reviewers for providing constructive suggestions and comments that greatly improved this work. This research was funded by PID CICITCA 2019-22 (Universidad Nacional de San Juan), PID 013 CONICET and PICT 2016/0995 FONCYT. Pablo A. Blanc and Bruno Colavitto acknowledge a postdoc fellowship provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Alejandro Oro and Carolina Rivas also thank CONICET for supporting their PhD studies with a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AO: conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization. PAB: conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization. BC: conceptualization, investigation, writing—original draft, writing—review and editing. CR: investigation, writing—review. LPP: conceptualization, investigation, writing—original draft, supervision, resources, funding acquisition. MR: investigation. NV: investigation.

Corresponding authors

Correspondence to Alejandro Oro or Pablo A. Blanc.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2635 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oro, A., Blanc, P.A., Colavitto, B. et al. Surface deformation and secondary effects of the January 18, 2021 (Mw 6.5) San Juan (Argentina) earthquake from remote sensing techniques. Int J Earth Sci (Geol Rundsch) 112, 2267–2291 (2023). https://doi.org/10.1007/s00531-023-02354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02354-x

Keywords

Navigation