Skip to main content

Advertisement

Log in

Early Ordovician to early Silurian forearc accretionary processes in front of the Selety–Stepnyak arc in the Kokchetav area, northern Kazakhstan: implications for continental growth in the northwestern Altaids

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Kokchetav area, a late Neoproterozoic to early Palaeozoic metamorphic, ophiolitic, and volcanic–sedimentary complex provides important insights into crustal accretion in the northwestern Altaids. We carried out a systematic study of the Northern Complex in the mélange within the Chaglinka, Zhanatalap, and Chelkar regions. The mélange includes fragments of mafic igneous rocks, pelagic cherts, volcaniclastic rocks, and turbidites. The mafic rocks have high Mg#, Cr, and Ni values, small negative Nb–Ta anomalies, juvenile εNd(t)–εHf(t) values, and low 87Sr/86Sr(i) ratios, suggesting they were derived from a depleted mantle source in a supra-subduction zone setting. The volcaniclastic rocks exhibit moderate light rare earth element enrichment, small negative Nb–Ta anomalies, juvenile εNd(t)–εHf(t) values, and low 87Sr/86Sr(i) ratios, indicating they were derived from arc-related igneous rocks. The granites have features consistent with high-Sr/Y or A-type granites and variable εNd(t) and εHf(t) values, implying they formed by melting of arc-related volcanogenic sediments in the mélange. Zircon U–Pb ages for the volcaniclastic rocks vary from 540 to 423 Ma (Early Cambrian to late Silurian). These ages are consistent with those of volcanic rocks exposed in the Stepnyak–Selety arc. Subduction of the oceanic lithosphere beneath the Stepnyak–Selety arc may have occurred during the Early Cambrian and was followed by roll-back of the subducting slab during the Early Ordovician and continued subduction in the early Silurian. The successive subduction and accretion resulted in gradual maturation of the Stepnyak–Selety arc, which produced the compositionally and isotopically variable igneous rocks in the Kokchetav mélange zone and generated the juvenile crust of present-day northern Kazakhstan.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data underlying this article are available in the article’s online supplementary materials (ESM 1–3). They are available from the corresponding author upon reasonable request.

References

  • Abuduxun N, Xiao WJ, Windley BF, Chen YC, Huang P, Sang M, Li L, Liu XJ (2021) Terminal suturing between the Tarim Craton and the Yili-Central Tianshan arc: insights from mélange-ocean plate stratigraphy, detrital zircon ages and provenance of the South Tianshan accretionary complex. Tectonics 40:e2021TC006705. https://doi.org/10.1029/2021TC006705

    Article  Google Scholar 

  • Buslov MM, Dobretsov NL, Vovna GM, Kiselev VI (2015) Structural location, composition, and geodynamic nature of diamond-bearing metamorphic rocks of the Kokchetav subduction–collision zone of the Central Asian Fold Belt (northern Kazakhstan). Russ Geol Geophys 56(1–2):64–80. https://doi.org/10.1016/j.rgg.2015.01.004

    Article  Google Scholar 

  • Cawood PA, Hawkesworth C, Dhuime B (2012) Detrital zircon record and tectonic setting. Geology 40(10):875–878. https://doi.org/10.1130/G32945.1

    Article  Google Scholar 

  • Coutts DS, Matthews WA, Hubbard SM (2019) Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci Front 10(4):1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002

    Article  Google Scholar 

  • Davidson J, Macpherson C, Turner S (2007) Amphibole control in the differentiation of arc magmas. Geochim Cosmochim Acta 71:A204

    Google Scholar 

  • Degtyarev KE (2011) Tectonic evolution of early Paleozoic Island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics 45(1):23–50. https://doi.org/10.1134/S0016852111010031

    Article  Google Scholar 

  • Degtyarev KE, Ryazantsev AV (2007) Cambrian arc–continent collision in the Paleozoides of Kazakhstan. Geotectonics 41:63–86. https://doi.org/10.1134/S0016852107010062

    Article  Google Scholar 

  • Degtyarev KE, Shatagin KN, Kotov AB, Sal’nikova EB, Luchitskaya MV, Shershakova MM, Shershakov AV, Tret’yakov AA (2008) Early Ordovician volcanic complex of the Stepnyak Zone (northern Kazakhstan); age substantiation and geodynamic setting. Dokl Earth Sci 419:248–252. https://doi.org/10.1134/S1028334X0802013X

    Article  Google Scholar 

  • Degtyarev KE, Kovach VP, Tretyakov AA, Kotov AB, Wang KL (2015) Age and sources of Precambrian zircon-rutile deposits in the Kokchetav Sialic Massif (Northern Kazakhstan). Dokl Earth Sci 464(Part 2):1005–1009. https://doi.org/10.1134/S1028334X15100116

    Article  Google Scholar 

  • Degtyarev KE, Tolmacheva TY, Tretyakov AA (2016) Cambrian to Lower Ordovician complexes of the Kokchetav Massif and its fringing (Northern Kazakhstan): structure, age, and tectonic settings. Geotectonics 50(1):71–142. https://doi.org/10.1134/S0016852116010027

    Article  Google Scholar 

  • Degtyarev K, Yakubchuk A, Tretyakov A, Kotov A, Kovach V (2017) Precambrian geology of the Kazakh uplands and Tien Shan: an overview. Gondwana Res 47:44–75. https://doi.org/10.1016/j.gr.2016.12.014

    Article  Google Scholar 

  • Dobretsov NL, Sobolev NV, Shatsky VS, Coleman RG, Ernst WG (1995) Geotectonic evolution of diamondiferous paragneisses, Kokchetav Complex, northern Kazakhstan: the geologic enigma of ultrahigh–pressure crustal rocks within a Paleozoic fold belt. Isl Arc 4:267–279. https://doi.org/10.1111/j.1440-1738.1995.tb00149.x

    Article  Google Scholar 

  • Dobretsov NL, Buslov MM, Zhimulev FI (2005) Cambrian-Ordovician tectonic evolution of the Kokchetav metamorphic belt, Northern Kazakhstan. Russ Geol Geophys 46:785–795

    Google Scholar 

  • Dobretsov NL, Buslov MM, Zhimulev FI, Travin AV, Zayachkovsky AA (2006a) Vendian–early Ordovician geodynamic evolution and model for exhumation of ultrahigh– and high–pressure rocks from the Kokchetav subduction–collision zone. Russ Geol Geophys 47(4):428–444

    Google Scholar 

  • Dobretsov NL, Buslov MM, Rubatto D, Safonova IY (2006b) Shalkar ophiolite complex, northern Kazakhstan: Structural setting, age, geochemistry, and genesis. Russ Geol Geophys 47:471–481

    Google Scholar 

  • Dobretsov NL, Buslov MM (2007) Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russ Geol Geophys 48:71–82

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Braun TV, Sheshel GG, Podkuiko YA (1994) Geology and structure of diamond-bearing rocs of the Kokchetav massif (Kazakhstan). Tectonophysics 233:293–313

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophy Geosy 14(3):489–518. https://doi.org/10.1029/2012GC004334

    Article  Google Scholar 

  • Gerdes A, Montero P, Bea F, Fershater G (2002) Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. Int J Earth Sci 91:3–19

    Article  Google Scholar 

  • Glorie S, Zhimulev FI, Buslov MM, Andersen T, Plavsa D, Izmer A, Vanhaecke F, De Grave J (2015) Formation of the Kokchetav subduction–collision zone (northern Kazakhstan): insights from zircon U–Pb and Lu–Hf isotope systematics. Gondwana Res 27:424–438. https://doi.org/10.1016/j.gr.2013.10.012

    Article  Google Scholar 

  • Han YG, Zhao GC, Sun M, Eizenhöfer PR, Hou WZ, Zhang XR, Liu DX, Wang B, Zhang GW (2015) Paleozoic accretionary orogenesis in the paleo-Asian ocean: insights from detrital zircons from Silurian to carboniferous strata at the northwestern margin of the Tarim craton. Tectonics 34(2):334–351. https://doi.org/10.1002/2014TC003668

    Article  Google Scholar 

  • Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548. https://doi.org/10.1139/e71-055

    Article  Google Scholar 

  • Kaneko Y, Maruyama S, Terabayashi M, Yamamoto H, Ishikawa M, Anma R, Parkinson CD, Ota T, Nakajima Y, Katayama I, Yamamoto J, Yamauchi K (2000) Geology of the Kokchetav UHP–HP metamorphic belt, northern Kazakhstan. Isl Arc 9:264–283. https://doi.org/10.1046/j.1440-1738.2000.00278.x

    Article  Google Scholar 

  • Katayama I, Maruyama S, Parkinson CD, Terada K, Sano Y (2001) Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth Planet Sci Lett 188:185–198. https://doi.org/10.1016/s0012-821x(01)00319-3

    Article  Google Scholar 

  • Khain EV, Bibikova EV, Kröner A, Zhuravlev DZ, Sklyarov EV, Fedotova AA, Kravchenko-Berezhnoy IR (2002) The most ancient ophiolite of Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhungur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet Sci Lett 199:311–325

    Article  Google Scholar 

  • Korobkin VV, Buslov MM (2011) Tectonics and geodynamics of the western Central Asian Fold Belt (Kazakhstan Paleozoides). Russ Geol Geophys 52:1600–1618. https://doi.org/10.1016/j.rgg.2011.11.011

    Article  Google Scholar 

  • Kopyatkevich RA, Tsai DT (1973) On the age of volcanogenic-Jasper Stratum of the Stepnyak megasynclinorium. In: Informatsionnyi sbornik nauchno-issledovatel’skikh rabot Instituta geologicheskikh nauk, IGN Akad. Nauk Kaz. SSR, Alma–Ata, pp 194–196

  • Korobkin VV, Smirnov AV (2006) Paleozoic tectonics and geodynamics of volcanic arcs in Northern Kazakhstan. Russ Geol Geophys 47(4):458–470

    Google Scholar 

  • Kovach V, Degtyarev K, Tretyakov A, Kotov A, Tolmacheva E, Wang KL, Chung SL, Lee HY, Jahn BM (2017) Sources and provenance of the Neoproterozoic placer deposits of the Northern Kazakhstan: implication for continental growth of the western Central Asian Orogenic Belt, Gondwana Res 47:28–43. https://doi.org/10.1016/j.gr.2016.09.012

  • Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A, Wingate MTD (2007) Accretionary growth and crustformation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Mem Geol Soc Am 200:181–209

    Google Scholar 

  • Kröner A, Hegner E, Lehmann B, Heinhorst J, Wingate MTD, Liu DY, Ermelov P (2008) Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. J Asian Earth Sci 32:118–130. https://doi.org/10.1016/j.jseaes.2007.10.013

    Article  Google Scholar 

  • Kröner A, Alexeiev DV, Rojas-Agramonte Y, Hegner E, Wong J, Xia X, Belousova E, Mikolaichuk AV, Seltmann R, Liu DY (2013) Mesoproterozoic (Grenville–age) terranes in the Kyrgyz North Tianshan: zircon ages and Nd–Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Res 23(1):272–295. https://doi.org/10.1016/j.gr.2012.05.004

    Article  Google Scholar 

  • Kusky TM, Windley BF, Safanova I, Wakita K, Wakabashi J, Polat A, Santosh M (2013) Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction and accretion. Gondwana Res 24:501–547. https://doi.org/10.1016/j.gr.2013.01.004

    Article  Google Scholar 

  • Letnikov FA, Kotov AB, Sal’nikova EB, Shershakova MM, Shershakov AV, Rizvanova NG, Makeev AF (2007) Granodiorites of the Grenville phase in the Kokchetav Block, northern Kazakhstan. Dokl Earth Sci 417(8):1195–1197. https://doi.org/10.1134/S1028334X07080132

    Article  Google Scholar 

  • Letnikov AFA (2008) On the age of the Stepnyak Massif and its related orebody (Northern Kazakhstan). Dokl Earth Sci 423(8):1194–1196. https://doi.org/10.1134/s1028334x08080023

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous Rocks: a classification and glossary of terms. IUGS, pp 252

  • Letnikov FA, Kotov AB, Degtyarev KE, Levchenkov OA, Shershakova MM, Shershakov AV, Rizvanova NG, Makeev AF, Tolkachev MD (2009a) Late Ordovician granitoids of Northern Kazakhstan: U–Pb age and tectonic setting. Dokl Earth Sci 424(1):24–28. https://doi.org/10.1134/S1028334X09010061

    Article  Google Scholar 

  • Letnikov FA, Kotov AB, Degtyarev KE, Sal’nikova EB, Levchenkov OA, Shershakova MM, Shershakov AV, Rizvanova NG, Makeev AF, Tolkachev MD (2009b) Silurian granites of northern Kazakhstan: U–Pb age and tectonic position. Stratigr Geo Correl 17(3):275–282. https://doi.org/10.1134/S0869593809030034

    Article  Google Scholar 

  • Letnikov FA, Kotov AB, Zayachkovskii AA, Rizvanova NG, Sal’nikova EB, Plotkina YV, (2012) U–Pb age of granitoids from the Elenovsk Complex (Kokchetav Block, Northern Kazakhstan). Dokl Earth Sci 20(5):417–425

    Google Scholar 

  • Lin J, Liu YS, Yang YH, Hu ZC (2016) Calibration and correction of LA–ICP–MS and LA–MC–ICP–MS analyses for element contents and isotopic ratios. Solid Earth Sci 1:5–27. https://doi.org/10.1016/j.sesci.2016.04.002

    Article  Google Scholar 

  • Li PF, Sun M, Shu CT, Yuan C, Jiang YD, Zhang L, Cai KD (2019) Evolution of the Central Asian Orogenic Belt along the Siberian margin from Neoproterozoic-Early Paleozoic accretion to Devonian trench retreat and a comparison with Phanerozoic eastern Australia. Earth Sci Rev 198:102951. https://doi.org/10.1016/j.earscirev.2019.102951

    Article  Google Scholar 

  • Liu YS, Zong KQ, Kelemen PB, Gao S (2008) Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247:133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016

  • Liu Y, Xiao WJ, Windley BF, Zhou KF, Li RS, Zhan MG, Sang M, Yang H, Jia XL, Chen YC, Ji WH, Ao SJ (2021) Three stages of arc migration in the Carboniferous-Triassic in northern Qiangtang, central Tibet, China: ridge subduction and asynchronous slab rollback of the Jinsha Paleotethys. Geol Soc Am Bull. https://doi.org/10.1130/B35906.1

    Article  Google Scholar 

  • Masago H, Rumble D, Ernst WG, Parkinson CD, Maruyama S (2003) Low δ18O eclogites from the Kokchetav massif, northern Kazakhstan. J Metamorph Geol 21(6):579–587. https://doi.org/10.1046/j.1525-1314.2003.00465.x

    Article  Google Scholar 

  • Maruyama S, Parkinson CD (2000) Overview of the geology, petrology and tectonic framework of the high–pressure–ultrahigh–pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. Isl Arc 9:439–455. https://doi.org/10.1046/j.1440-1738.2000.00288.x

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of theadakitic signature. Lithos 112:556–574

    Article  Google Scholar 

  • Obut OT, Buslov MM, Iwata K, Zhimulev FI (2006) Timing of collision of the Kokchetav massif with the Stepnyak island arc on the basis of conodonts and radiolarians from siliceous rocks of juxtaposed terranes of different geodynamic settings. Russ Geol Geophys 47(4):451–457

    Google Scholar 

  • Ota T, Terabayashi M, Parkinson CD, Masago H (2000) Thermobaric structure of the Kokchetav ultrahigh–pressure–high–pressure massif deduced from a north–south transect in the Kulet and Saldat-Kol regions, northern Kazakhstan. Isl Arc 9:328–357

    Article  Google Scholar 

  • Patiño Douce AEP (1999) What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11:Q0AA06. https://doi.org/10.1029/2009GC002618

    Article  Google Scholar 

  • Pearce JA (1996) A user's guide to basalt discrimination diagram: In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: application for massive sulphide exploration, vol 12. Short Course Notes. Geological Association of Canada, p 34

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40:1579–1611. https://doi.org/10.1093/petrology/40.11.1579

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394. https://doi.org/10.1016/s0009-2541(97)00150-2

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425:605–609

    Article  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific Technical Press, London, p 352

    Google Scholar 

  • Safonova I, Kotlyarov A, Krivonogov S, Xiao W (2017) Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res 50:167–194. https://doi.org/10.1016/j.gr.2017.04.005

    Article  Google Scholar 

  • Safonova I, Savinskiy I, Perfilova A, Gurova A, Maruyama S, Tsujimori T (2020) The Itmurundy Pacific-type orogenic belt in northern Balkhash, central Kazakhstan: Revisited plusfirst U-Pb age, geochemical and Nd isotope data from igneous rocks. Gondwana Res 79:49–69. https://doi.org/10.1016/j.gr.2019.09.004

    Article  Google Scholar 

  • Safonova I, Perfilova A, Obut O, Kotler P, Aoki S, Komiya T, Wang B, Sun M (2021) Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U-Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int J Ear Sci 1:20. https://doi.org/10.1007/s00531-021-02059-z

    Article  Google Scholar 

  • Safonova I, Perfilova A, Savinskiy I, Kotler P, Sun M, Wang B (2022) Sandstones of the Itmurundy accretionary complex, central Kazakhstan, as archives of arc magmatism and subduction erosion: evidence from U-Pb zircon ages, geochemistry and Hf–Nd isotopes. Gondwana Res 111:35–52. https://doi.org/10.1016/j.gr.2022.06.018

    Article  Google Scholar 

  • Sang M, Xiao WJ, Bakirov A, Orozbaev R, Sakiev K, Zhou KF (2017) Oblique wedge extrusion of UHP/HP complexes in the Late Triassic: structural analysis and zircon ages of the Atbashi Complex, South Tianshan, Kyrgyzstan. Int Geol Rev 59(10):1369–1389. https://doi.org/10.1080/00206814.2016.1241163

    Article  Google Scholar 

  • Schertl HP, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “Type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38. https://doi.org/10.1016/j.jseaes.2012.10.032

    Article  Google Scholar 

  • Şengör AMC, Natal’in BA, Burtman US (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:209–304

    Article  Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    Article  Google Scholar 

  • Shatsky VS, Jagoutz E, Sobolev NV, Kozmenko OA, Parkhomenko VS, Troesch M (1999) Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petr 137:185–205. https://doi.org/10.1007/s004100050545

    Article  Google Scholar 

  • Shatsky VS, Skuzovatov SY, Ragozin AL (2018) Isotopic-geochemical evidence for crustal contamination of eclogites in the Kokchetav subduction–collision zone. Russ Geol Geophys 59:1560–1576. https://doi.org/10.1016/j.rgg.2018.12.003

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu–Bonin–Mariana subduction factory. Inside Subduction Factory 138:175–222. https://doi.org/10.1029/138GM10

    Article  Google Scholar 

  • Tretyakov AA, Kotov AB, Degtyarev KE, Sal’nikova EB, Shatagin KN, Yakovleva SZ, Anisimova IV (2011a) The Middle Riphean volcanogenic complex of Kokchetav massif (Northern Kazakhstan): structural position and age substantiation. Dokl Earth Sci 438(2):739–743. https://doi.org/10.1134/S1028334X11060262

    Article  Google Scholar 

  • Tretyakov AA, Degtyarev KE, Kotov AB, Sal’nikova EB, Shatagin KN, Yakovleva SZ, Anisimova IV, Plotkina YV (2011b) Middle Riphean gneiss granites of the Kokchetav Massif (Northern Kazakhstan): structural position and age substantiation. Dokl Earth Sci 440(4):511–515. https://doi.org/10.1134/S1028334X11100072

    Article  Google Scholar 

  • Turkina OM, Letnikov FA, Levin AV (2011) Mesoproterozoic granitoids of the Kokchetav microcontinent basement. Dokl Earth Sci 436(2):176–180. https://doi.org/10.1134/S1028334X11020103

    Article  Google Scholar 

  • Wakita K (2015) OPS mélange: a new term for mélanges of convergent margins of the world. Int Geol Rev 57(5–8):529–539. https://doi.org/10.1080/00206814.2014.949312

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47. https://doi.org/10.1144/0016-76492006-022

    Article  Google Scholar 

  • Wilhem C, Windley BF, Stampfli GM (2012) The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci Rev 113:303–341. https://doi.org/10.1016/j.earscirev.2012.04.001

    Article  Google Scholar 

  • Xiao W, Han C, Yuan C, Sun M, Zhao G, Shan Y (2010) Transitions among Mariana–, Japan–, Cordillera–and Alaska–type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. Geol Soc Lond Spec Publ 338:35–53. https://doi.org/10.1144/SP338.3

    Article  Google Scholar 

  • Xiao W, Huang B, Han C, Sun S, Li J (2010) A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res 18:253–273. https://doi.org/10.1016/j.gr.2010.01.007

    Article  Google Scholar 

  • Xiao WJ, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY, Song DF, Tian ZH, Luo J (2014) How many sutures in the southern Central Asian Orogenic Belt: insights from East Xinjiang-West Gansu (NW China)? Geosci Front 5:525–536. https://doi.org/10.1016/j.gsf.2014.04.002

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M, Chen HL (2015) A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annu Rev Earth Pl Sc 43:477–507. https://doi.org/10.1146/annurev-earth-060614-105254

    Article  Google Scholar 

  • Xiao W, Windley BF, Han C, Liu W, Wan B, Zhang J, Ao S, Zhang Z, Song D (2018) Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Sci Rev 186:94–128. https://doi.org/10.1016/j.earscirev.2017.09.020

    Article  Google Scholar 

  • Yakubchuk A (2004) Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J Asian Earth Sci 23:761–779. https://doi.org/10.1016/j.jseaes.2004.01.006

    Article  Google Scholar 

  • Yui TF, Chu HT, Hwang SL, Shen P, Wu TW, Liou JG, Sobolev NV (2010) Geochemistry of garnetiferous Ti–clinohumite rock and talc–kyanite–phengite– almandine schist from the Kokchetav UHP terrane, Kazakhstan: an insight to possible origins of some chemically unusual UHP rocks. Lithos 118:131–144. https://doi.org/10.1016/j.lithos.2010.04.005

    Article  Google Scholar 

  • Zhang JN, Xiao WJ, Han CM, Ao SJ, Yuan C, Sun M, Geng HY, Zhao GC, Guo QQ, Ma C (2011) Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Res 19:958–974. https://doi.org/10.1016/j.gr.2010.10.003

    Article  Google Scholar 

  • Zhang RY, Liou JC, Sobolev NV, Shatsky VS, Lizuka Y, Lo CH, Ogasawara Y (2012) Tale of the Kulet eclogite from the Kokchetav Massif, Kazakhstan: initial tectonic setting and transition from amphibolites to eclogites. J Metamorph Geol 30:537–559. https://doi.org/10.1111/j.1525-1314.2012.00980.x

    Article  Google Scholar 

  • Zhimulev FI, Buslov MM, Travin AV, Dmitrieva NV, De Grave I (2011) Early-Middle Ordovician nappe tectonics of the junction between the Kokchetav HP–UHP metamorphic belt and Stepnyak paleoisland arc (northern Kazakhstan). Russ Geol Geophys 52:109–123. https://doi.org/10.1016/j.rgg.2010.12.009

    Article  Google Scholar 

  • Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC, Zhang ZM (2017) The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res 290:32–48. https://doi.org/10.1016/j.precamres.2016.12.010

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brian Windley, Peng Gao, Kefa Zhou, Yichao Chen, Xiangkuan Gong and Abuduxun Nijiati for assistance and/or discussions. This study was financially supported by the West Light Foundation of the Chinese Academy of Sciences (2021–XBQNXZ–016, 2016–QNXZ–B–14), the National Natural Science Foundation of China (41803036, 41888101), the “Tianshan Cedar Wood” Science and Technology Project of Xinjiang Uygur Autonomous Region (2019Q087), the Science and Technology Major Project of Xinjiang Uygur Autonomous Region, China (2021A03001) and the Project of China–Pakistan Joint Research Center on Earth Sciences of the CAS (131551KYSB20200021). This study was financially supported by the High Level Talent Introduction Program of Xinjiang Uyghur Autonomous Region 2018. This is a contribution to IGCP 662 and 710.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjiao Xiao or Miao Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that are directly or indirectly related to the work submitted for publication.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Xiao, W., Sang, M. et al. Early Ordovician to early Silurian forearc accretionary processes in front of the Selety–Stepnyak arc in the Kokchetav area, northern Kazakhstan: implications for continental growth in the northwestern Altaids. Int J Earth Sci (Geol Rundsch) 112, 2161–2180 (2023). https://doi.org/10.1007/s00531-023-02347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02347-w

Keywords

Navigation