Skip to main content

Advertisement

Log in

The Paleozoic Central Patagonian Igneous Metamorphic Belt: its geodynamic and tectonic interpretation based on paleogeographic reconstructions

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

On the southwestern margin of the North Patagonian Massif (Argentina), there is a NW–SE trending belt consisting of igneous and metamorphic rocks that is named the Central Patagonian Igneous Metamorphic Belt. It defines the boundary between the mentioned massif and southern Patagonia (including the Deseado Massif). It is debatable whether this belt belongs to an orogen generated by accretion or collision and whether it was created in a single event or over the course of several events. Paleogeographic reconstructions were conducted to answer this query, confirming that there are tectonic processes involved in two events: the Chanic (Devonian) and the Gondwanan (late Carboniferous–early Permian) events. They show a movement of South America toward the SW during which an accretionary orogen was built during the Chanic event between ca. 400 Ma and ca. 360 Ma. Later, the paleogeographic reconstructions show an abrupt change in the movement of South America; it is proposed that due to this movement, the previously built orogen collapsed between ca. 360 Ma and ca. 330 Ma. During the Gondwanan event, the subduction surrounding Pangea in the Patagonian belt caused plutonic emplacement in the already-existing orogen structures and paleogeographic reconstructions depict South America with a movement toward the northeast, which involves a displacement due to a slab pull from the northern Paleotethys Ocean boundary. It is further supported that lateral displacement between Gondwana domains brought forth by this slab pull is what led to the assembly between the North Patagonian Massif and southern Patagonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data on the paleogeographic reconstructions carried out can be requested from the author.

References

  • Adie RJ (1952) The position of the Falkland islands in a reconstruction of Gondwanaland. Geol Mag 89(6):401–410. https://doi.org/10.1017/S0016756800068102

    Article  Google Scholar 

  • Alvey A (2009) Using crustal thickness and continental lithosphere thinning factors from gravity inversion to refine plate reconstruction models for the Arctic and North Atlantic. Ph. D. Thesis, Liverpool University (unpublished), 189 p.

  • Anderson DL (1982) Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297:391–393

    Article  Google Scholar 

  • Bercovici D, Ricard Y, Richards MA (2000) The relation between mantle dynamics and plate tectonics: a primer. In: Richards M, Gordon R, van der Hilst R (eds) The history and dynamics of global plate motions, 121 geophysical monograph. American Geophysical Union, Washington, pp 5–46

    Chapter  Google Scholar 

  • Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res 107(B11):1–31. https://doi.org/10.1029/2000JB000050

    Article  Google Scholar 

  • Bilmes A, D’Elia L, Franzese JR, Veiga GD, Hernández M (2013) Miocene block uplift and basin formation in the Patagonian foreland: the Gastre Basin, Argentina. Tectonophysics 601(98):111. https://doi.org/10.1016/j.tecto.2013.05.001

    Article  Google Scholar 

  • Bucher J, García M, López M, Milanese F, Bilmes A, D’Elia L, Naipauer M, Sato AM, Funes D, Rapalini A, Franzese J (2019) Tectonostratigraphic evolution and timing deformation in the Miocene Paso del Sapo Basin: implications for the Patagonian Broken Foreland. J S Am Earth Sci 94:102212

    Article  Google Scholar 

  • Bullard EC, Everett JE, Smith LG (1965) The fit of the continents around the Atlantic. Philos Trans R Soc Lond A 258:41–51

    Article  Google Scholar 

  • Calderón M, Hervé F, Fuentes F, Fosdick JC, Sepúlveda F, Galaz G (2016) Tectonic evolution of Paleozoic and Mesozoic Andean metamorphic complexes and the Rocas Verdes Ophiolites in southern Patagonia. In: Ghiglione MC (ed) Geodynamic evolution of the southernmost Andes. Springer Earth System Sciences, New York, pp 7–36

    Chapter  Google Scholar 

  • Cawood PA, Kroner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth History. In: Cawood PA, Kroner A (eds) Earth accretionary systems in space and time. The Geological Society, Special Publications, vol 318. London, pp 1–36

  • Cerredo ME, López De Luchi MG (1998) Mamil Choique granitoids, southwestern North Patagonian event, Argentina: magmatism and metamorphism associated with a polyphasic evolution. J S Am Earth Sci 11:499–515. https://doi.org/10.1016/S0895-9811(98)00025-X

    Article  Google Scholar 

  • Chase CG, Sprowl DR (1983) The modern geoid and ancient plate boundaries. Earth Planet Sci Lett 62:314–320. https://doi.org/10.1016/0012-821X(83)90002-X

    Article  Google Scholar 

  • Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35:391–394. https://doi.org/10.1130/G23240A.1

    Article  Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2002) How mantle slabs drive plate tectonics. Science 298(5591):207–209

    Article  Google Scholar 

  • Curtis ML, Hyam DM (1998) Late Paleozoic to Mesozoic structural evolution of the Falkland Islands: a displaced segment of the Cape Fold Belt. J Geol Soc Lond 155:115–129

    Article  Google Scholar 

  • Dalla Salda LH, Cingolani C, Varela R (1991) El basamento cristalino de la región nordpatagónica de los lagos Gutiérrez, Mascardi, y Guillermo, Provincia de Río Negro. Rev Asoc Geol Arg 46(3–4):263–276

    Google Scholar 

  • Dalla Salda LH, Varela R, Cingolani C, Aragón E (1994) The Río Chico paleozoic crystalline complex and the evolution of northern Patagonia. J S Am Earth Sci 7:377–386. https://doi.org/10.1016/0895-9811(94)90022-1

    Article  Google Scholar 

  • Domeier M, Van der Voo R, Torsvik TH (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics 514–517:14–43

    Article  Google Scholar 

  • Echaurren A, Folguera A, Gianni G, Orts D, Tassara A, Encinas A, Giménez M, Valencia V (2016) Tectonic evolution of the North Patagonian Andes (41°– 44° S) through recognition of syntectonic strata. Tectonophysics 677–678:99–114

    Article  Google Scholar 

  • Faccenna C, Becker TW, Holt AF, Brun JP (2021) Mountain building, mantle convection and supercontinents: Holmes (1931) revisited. Earth Planet Sci Lett 564:116905. https://doi.org/10.1016/j.epsl.2021.116905

    Article  Google Scholar 

  • Figari E, Scasso R, Cúneo R, Escapa I (2015) Estratigrafía y evolución geológica de la Cuenca deCañadón Asfalto, Provincia del Chubut, Argentina. Latin Am J Sedimentol Basin Anal 22(2):135–169

    Google Scholar 

  • Fisher RA (1953) Dispersion on a sphere. Philos Trans R Soc Lond A 217:295–305

    Google Scholar 

  • Foix N, Allard JO, Ferreira ML, Atencio M (2020) Spatiotemporal variations in the mesozoic sedimentary record, Golfo San Jorge basin (Patagonia, Argentina): andean vs cratonic sources. J S Am Earth Sci 98:102464

    Article  Google Scholar 

  • Forsythe R (1982) The late Paleozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. J Geol Soc Lond 139:671–682. https://doi.org/10.1144/gsjgs.139.6.0671

    Article  Google Scholar 

  • Gallo LC, Tomezzoli RN, Cristallini EO (2017) A pure dipole analysis of the of Pangea. Geochem Geophys Geosyst 18:1499–1519. https://doi.org/10.1002/2016GC006692

    Article  Google Scholar 

  • García-Sansegundo J, Farías P, Gallastegui G, Giacosa RE, Heredia N (2009) Structure and metamorphism of the Gondwanan basement in the Bariloche region (North Patagonian Argentine Andes). Int J Earth Sci 98(7):1599–1608

    Article  Google Scholar 

  • Geuna SE, Escosteguy LD, Miró R (2008) Paleomagnetism of the Late Devonian-Early Carboniferous Achala Batholith, Córdoba, central Argentina: implications for the apparent polar wander path of Gondwana. Gondwana Res 13:227–237

    Article  Google Scholar 

  • Giacosa RE (2020) Basement control, sedimentary basin inception and early evolution of the Mesozoic basins in the Patagonian foreland. J S Am Earth Sci 97:102407

    Article  Google Scholar 

  • Giacosa RE, Heredia N (2004) Structure of the North Patagonian thick-skinned foldand-thrust belt, southern central Andes, Argentina (41°–42°S). J S Am Earth Sci 18:61–72. https://doi.org/10.1016/j.jsames.2004.08.006

    Article  Google Scholar 

  • Giacosa RE, González PD, Silva Nieto D, Busteros A, Lagorio S, Rossi A (2014) Complejo Ígneo-Metamórfico Cáceres: una nueva unidad metamórfica de alto grado en el basamento de Gastre, Macizo Nordpatagónico (Chubut). XIX Congreso Geológico Argentino, Tectónica Preandina

  • Gianni GM, Echaurren A, Folguera A, Likerman J, Encinas A, García HPA, Dal Molin C, Valencia VA (2017) Cenozoic intraplate tectonics in Central Patagonia: record of main Andean phases in a weak upper plate. Tectonophysics 721:151–166. https://doi.org/10.1016/j.tecto.2017.10.005

    Article  Google Scholar 

  • González PD, Giacosa RE (2022) Rocas Metamórficas e Ígneas del Paleozoico. Relatorio XXI Congreso Geológico Argentino, Geología y Recursos Naturales de la Provincia del Chubut, Argentina, Puerto Madryn, pp 47–104

  • González PD, Sato AM, Naipauer M, Varela R, Basei M, Sato K, Llambías E, Chemale F, Castro Dorado A (2018) Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U-Pb dating of K-bentonites, and related volcanogenic rocks. Gondwana Res 63:186–225

    Article  Google Scholar 

  • González PD, Naipauer M, Sato AM, Varela R, Basei M, Cábana MC, Vlach S, Arce M, Parada M (2020) Early Paleozoic structural and metamorphic evolution of the Transpatagonian Orogen related to Gondwana assembly. Int J Earth Sci. https://doi.org/10.1007/s00531-020-01939-0

    Article  Google Scholar 

  • Gurnis M (1988) Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332:695–699

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández Suárez J, Weil A, Murphy B, Nance D, Corfú F, Johnston S (2008) Self-subduction of the Pangaean global plate. Nat Geosci 1:549–553. https://doi.org/10.1038/ngeo250

    Article  Google Scholar 

  • Hallam A (1983) Supposed Permo-Triassic megashear between Laurasia and Gondwana. Nature 301:499–502. https://doi.org/10.1038/301499a0

    Article  Google Scholar 

  • Hervé F, Calderon M, Fanning CM, Pankhurst RJ, Fuentes F, Rapela CW (2016) Devonian magmatism in the accretionary complex of southern Chile. J Geol Soc Lond 173(4):587–602. https://doi.org/10.1144/jgs2015-163

    Article  Google Scholar 

  • Hervé F, Calderon M, Fanning CM, Pankhurst RJ, Rapela CW, Quezada P (2018) The country rocks of Devonian magmatism in the north Patagonian massif and Chaitenia. Andean Geol 45(3):301–317. https://doi.org/10.5027/andgeoV45n3-3117

    Article  Google Scholar 

  • Hopper E, Fischer KM, Wagner LS, Hawman RB (2017) Reconstructing the end of the Appalachian orogeny. Geology 45:15–18

    Article  Google Scholar 

  • Irving E (1977) Drift of the major continental blocks since the Devonian. Nature 270:304–309. https://doi.org/10.1038/270304a0

    Article  Google Scholar 

  • Johnston ST (2000) The Cape Fold Belt and Syntaxis and the rotated Falkland Islands: dextral transpressional tectonics along the southwest margin of Gondwana. J Afr Earth Sc 31(1):1–13

    Google Scholar 

  • Kumar P, Yuan X, Ravi Kuman M, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897. https://doi.org/10.1038/nature06214

    Article  Google Scholar 

  • Lawver LA, Scotese CR (1987) A revised reconstruction of Gondwanaland. In: McKenzie GD (ed) Gondwana six: structure, tectonics, and geophysics. Monograph, vol 40, American Geophysical Union, New York, pp 17–23. https://doi.org/10.1029/GM040p0017.

  • López de Luchi M, Cerredo ME (2008) Geochemistry of the Mamil Choique granitoids at Río Chico, Río Negro, Argentina: late Paleozoic crustal melting in the North Patagonian Massif. J S Am Earth Sci 25:526–546

    Article  Google Scholar 

  • Marcos P, Pavón Pivetta C, Benedini L, Gregori D, Geraldes M, Scivetti N, Barros M, Varela M, Costa dos Santos A (2020) Late Paleozoic geodynamic evolution of the western North Patagonian Massif and its tectonic context along the southwestern Gondwana margin. Lithos 376–377:105801. https://doi.org/10.1016/j.lithos.2020.105801

    Article  Google Scholar 

  • Martin MW, Kato TT, Rodríguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the late Paleozoic accretionary complex and overlying fore magmatic arc, south central Chile (38–41°S): constrained for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18(4):582–605

    Article  Google Scholar 

  • Maruyama S, Santosh M, Zhao D (2007) Superplume, supercontinent, and postperovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary. Gondwana Res 11:7–37

    Article  Google Scholar 

  • McElhinny MW, Powell C, Pisarevsky SA (2003) Paleozoic terranes of eastern Australia and the drift history of Gondwana. Tectonophysics 362:41–65

    Article  Google Scholar 

  • Morel P, Irving E (1981) Paleomagnetism and the evoluion of Pangea. J Geophys Res 86(b3):1858–1872

    Article  Google Scholar 

  • Mundl A, Ntaflos T, Ackerman L, Bizimis M, Bjerg EA, Hauzenberger CA (2015) Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: isotopic evidence for its connection to Africa and Antarctica. Geology 43(1):39–42. https://doi.org/10.1130/G36344.1

    Article  Google Scholar 

  • Muttoni G, Kent DV, Garzanti E, Brack P, Abrahamsen N, Gaetani M (2003) Early Permian Pangea “B” to Late Permian Pangea “A.” Earth Planet Sci Lett 215:379–394

    Article  Google Scholar 

  • Nance D, Gutierrez-Alonso G, Keppie D, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Front 3(2):125–135

    Article  Google Scholar 

  • Nicholson C, Seeber L, Williams P, Sykes LR (1986) Seismic evidence for conjugate slip and block rotations within the San Andreas fault system, Southern California. Tectonics 5(4):629–648

    Article  Google Scholar 

  • Nokleberg W, Parfenov LM, Monger JW, Norton IO, Khanchuk AI, Stone DB, Scotese CR, Scholl DW, Fujita K (2001) Phanerozoic tectonic evolution of the Circum-North Pacific. Professional Paper 1626, United State Geological Survey, Denver, p 122

  • Oriolo S, Schulz B, González PD, Bechis F, Olaizola E, Krause J, Renda EM, Vizán H (2019) The Late Paleozoic tectonometamorphic evolution of Patagonia revisited: insights from the pressure-temperature-deformation-time (P-T-D-t) path of the Gondwanide basement of the north Patagonian Cordillera (Argentina). Tectonics 38:2378–2400

    Article  Google Scholar 

  • Oriolo S, González PD, Alegre P, Wemmer K, Varela R, Basei MAS (2023) The Cuesta Rahue Basement inlier (southern Neuquén Precordillera, Argentina): a Devonian to Triassic polyphaser orogenic record in northern Patagonia. J Geol Soc. https://doi.org/10.1144/jgs2022-143

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257. https://doi.org/10.1016/j.earscirev.2006.02.001

    Article  Google Scholar 

  • Pastor Galán D (2022) From supercontinent to superplate: Late Paleozoic Pangea’s inner deformation suggests it was a short-lived superplate. Earth Sci Rev 226:103918

    Article  Google Scholar 

  • Ramos VA (2008) Patagonia: a Paleozoic continent adrift? J S Am Earth Sci 26:235–251

    Article  Google Scholar 

  • Ramos VA (2022) E.7. La evolución tectónica de la Provincia del Chubut. Relatorio XXI Congreso Geológico Argentino, Geología y Recursos Naturales de la Provincia del Chubut, Argentina, Puerto Madryn, pp 47–104

  • Ramos VA, Naipauer M (2014) Patagonia: where does it come from? J Iber Geol 40(2):367–379

    Google Scholar 

  • Ramos VA, Lovecchio P, Naipauer M, Pángaro F (2020) The collision of Patagonia: geological facts and speculative interpretations. Ameghiniana 57(5):464–479

    Article  Google Scholar 

  • Rapalini A, Tarling D, Turner P, Flint SF, Vilas J (1994) Paleomagnetism of the Carboniferous Tepuel Group, Central Patagonia, Argentina. Tectonics 13:1277–1294. https://doi.org/10.1029/94TC00799

    Article  Google Scholar 

  • Rapela CW, Hervé F, Pankhurst RJ, Calderón M, Fanning CM, Quesada P, Poblete F, Palape C, Reyes T (2021) The Devonian accretionary orogen of the North Patagonian cordillera. Gondwana Res 96:1–21

    Article  Google Scholar 

  • Ravazzoli IA, Sesana FL (1977) Descripción geológica de la Hoja 41c “río Chico” (1: 200.000), provincia de Río negro. Boletín N◦ 148, Servicio Geológico Nacional, Buenos Aires, pp 1–77

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gómez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Renda EM, Álvarez MD, Prezzi C, Oriolo S, Vizán H (2019) Inherited basement structures and their influence in foreland evolution: a case study in Central Patagonia, Argentina. Tectonophysics 772:228–232

    Article  Google Scholar 

  • Renda EM, González PD, Vizán H, Oriolo S, Prezzi CB, Ruiz-González V, Schulz B, Krause J, Basei M (2021) Igneous-metamorphic basement of Taquetrén Range, Patagonia, Argentina: a key locality for the reconstruction of the Paleozoic evolution of Patagonia. J S Am Earth Sci 106:103045

    Article  Google Scholar 

  • Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:3–4

    Article  Google Scholar 

  • Rojo D, Calderón M, Hervé F, Díaz J, Quezada P, Suárez R, Ghiglione M, Fuentes F, Theye T, Cataldo J, Sandoval J, Viefhausi T (2021) Petrology and tectonic evolution of late Paleozoic mafic-ultramafic sequences and the Leones Pluton of the Eastern Andean Metamorphic Complex (46–47°S), southern Chile. J S Am Earth Sci 108:103198

    Article  Google Scholar 

  • Royden LH (1993) The tectonic expression slab pull at the continental convergent boundaries. Tectonics 12(2):303–325

    Article  Google Scholar 

  • Ruiz González V, Puigdomenech CG, Zaffarana CB, Vizán H, Somoza R (2020) Paleomagnetic evidence of the brittle deformation of the central Patagonian batholith at Gastre area (Chubut province, Argentina). J S Am Earth Sci 98:102442

    Article  Google Scholar 

  • Santosh M, Maruyama S, Yamamoto S (2009) The making and breaking of supercontinents: some speculations based on superplumes, superdownwelling and the role of tectosphere. Gondwana Res 15:324–341

    Article  Google Scholar 

  • Sears JW (2012) Transforming Siberia along the Laurussian margin. Geology 40(6):535–538. https://doi.org/10.1130/G32952.1

    Article  Google Scholar 

  • Senshu H, Maruyama S, Rino S, Santosh M (2009) Role of tonalite–trondhjemite–granite (TTG) crust subduction on the mechanism of supercontinent breakup. Gondwana Res 15:433–442

    Article  Google Scholar 

  • Serra-Varela S, Heredia N, Giacosa R, García Sansegundo S, Farias P (2020) Review of the polyorogenic Paleozoic basement of the Argentinean North Patagonian Andes: age, correlations, tectonostratigraphic interpretation and geodynamic evolution. Int Geol Rev. https://doi.org/10.1080/00206814.2020.1839798

    Article  Google Scholar 

  • Stanca RM, Paton DA, Hodgson DM, McCarthy DJ, Mortimer DJ (2019) A revised position for the rotated Falkland Islands microplate. J Geol Soc. https://doi.org/10.1144/jgs2018-163

    Article  Google Scholar 

  • Suárez R, González PD, Ghighlione MC (2019) A review on the tectonic evolution of the Paleozoic-Triassic basins from Patagonia: record of protracted westward migration of the pre-Jurassic subduction zone. J S Am Earth Sci 95:102256

    Article  Google Scholar 

  • Taboada AC, Shi GR (2011) Taxonomic review and evolutionary trends of Levipustulini and Absenticostini (Brachiopoda) from Argentina: palaeobiogeographic and palaeoclimatic implications. Mem Assoc Australas Palaeontol 41:87–114

    Google Scholar 

  • Taboada AC, Peixoto Neves J, Weinschütz LC, Pagani MA, Guimarães Simões M (2016) Eurydesma-Lyonia fauna (Early Permian) from the Itararé group, Paraná Basin (Brazil): a paleobiogeographic W-E trans-Gondwanan marine connection. Palaeogeogr Palaeoclimatol Palaeoecol 449:431–454

    Article  Google Scholar 

  • Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJ, Domeier M, Gaina C, Tohver T, Meert JG, McCausland PJA, Cocks RM (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth Sci Rev 114:325–368. https://doi.org/10.1016/j.earscirev.2012.06.007

    Article  Google Scholar 

  • Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, New York, p 411

    Book  Google Scholar 

  • Van der Voo R, French RB (1974) Apparent polar wandering for the Atlantic bordering continents: Late Carboniferous to Eocene. Earth Sci Rev 10:99–119

    Article  Google Scholar 

  • Van der Voo R, Mauk FJ, French RB (1976) Permian-Triassic continental configurations and the origin of the Gulf of Mexico. Geology 4(3):177–180

    Google Scholar 

  • Varela R, Basei MAS, Cingolani CA, Siga O Jr, Passarelli CR (2005) El Basamento Cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Rev Geol Chile 32:167–182

    Article  Google Scholar 

  • Varela R, Gregori DA, González PD, Basei MAS (2015) Caracterización geoquímica del magmatismo de arco Devónico y Carbonífero-Pérmico en el Noroeste de Patagonia. Rev Asoc Geol Arg 72:419–443

    Google Scholar 

  • Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559:1–27

    Article  Google Scholar 

  • Visser JNJ, Praekelt HE (1996) Subduction, mega-shear systems and Late Paleozoic basin development in the African segment of Gondwana. Geol Rundsch 85:632–646. https://doi.org/10.1007/BF02440101

    Article  Google Scholar 

  • Vizán H, Prezzi C, Japas MS, Van Zele MA, Guena SE, Renda EM (2015) Tracción de losa en el margen boreal del océano Paleotetis y deformación en el interior de Gondwana (incluyendo el cordón plegado de Ventana). Rev Asoc Geol Arg 72(3):355–377

    Google Scholar 

  • Vizán H, Prezzi C, Geuna S, Japas MS, Renda E, Franzese J, Van Zele MA (2017) Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions and Gondwana tectonics. Geosphere. https://doi.org/10.1130/GES01444.1

    Article  Google Scholar 

  • Volkheimer W (1964) Estratigrafía de la zona extraandina del Departamento de Cushamen (Chubut) entre los paralelos 42◦ y 42◦ 30’ y los meridianos 70◦ y 72◦. Rev Asoc Geol Arg 19(2):85–107

    Google Scholar 

  • von Gosen W (2009) Stages of Late Paleozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications. Geol Mag 146(1):48–71

    Article  Google Scholar 

  • von Gosen W, Loske W (2004) Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system.” J S Am Earth Sci 18:73–88. https://doi.org/10.1016/j.jsames.2004.08.007

    Article  Google Scholar 

  • Weil AB, Van der Voo R, van der Pluijm BA (2001) Oroclinal bending and evidence against the Pangea megashear: the Cantabria-Asturias arc (northern Spain). Geology 29(11):991–994

    Article  Google Scholar 

  • Yoshida M, Santosh M (2011) Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models. Earth Sci Rev 105:1–24

    Article  Google Scholar 

  • Zaffarana CB, López de Luchi MG, Somoza R, Mercader R, Giacosa R, Martino RD (2010) Anisotropy of magnetic susceptibility study in two classical localities of the Gastre Fault System, central Patagonia. J S Am Earth Sci 30:151–166. https://doi.org/10.1016/j.jsames.2010.10.003

    Article  Google Scholar 

  • Zaffarana CB, Somoza R, Orts DL, Mercader R, Boltshauser B, Ruiz González V, Puigdomenech C (2017) Internal structure of the Late Triassic Central Patagonian batholith at Gastre, southern Argentina: implications for pluton emplacement and the Gastre fault system. Geosphere 13:1973–1992. https://doi.org/10.1130/GES01493.1

    Article  Google Scholar 

  • Zhang N, Zhong S, Leng W, Li ZX (2010) A model for the evolution of the Earth´s mantle structure since the Early Paleozoic. J Geophys Res 115:B06401. https://doi.org/10.1029/2009JB006896

    Article  Google Scholar 

  • Zhong S, Zhang N, Zheng-Xiang Li ZX, Roberts JH (2007) Supercontinent cycles, true polar wander, and very long wavelength mantle convection. Earth Planet Sci Lett 261:551–564. https://doi.org/10.1016/j.epsl.2007.07.049

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UBACyT N° 2002015010069BA. Many thanks to the reviewers, Drs. Carlos Cingolani and Sebastián Oriolo, and to the Topic Editor Dr. Laura Giambiagi and the Chief Editor Dr. Ulrich Riller. Drs. Silvana E. Geuna, Emiliano M. Renda, Silvia L. Lagorio, and Ivan Sansom are acknowledged for their helpful comments that improved an early version of this paper. To the memory of Rubén.

Funding

This work was supported by a grant from the University of Buenos Aires (UBACyT N° 2002015010069BA). The author is a member of the career of the National Council for Scientific Research (CONICET Argentina) and a professor at the University of Buenos Aires. There are no financial interests related to this work. (1) No investigations were carried out in humans or animals. (2) It has no implications for public health or general well-being.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroldo Vizán.

Ethics declarations

Conflict of interest

This work is of scientific interest only. There are no financial interests directly or indirectly related to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizán, H. The Paleozoic Central Patagonian Igneous Metamorphic Belt: its geodynamic and tectonic interpretation based on paleogeographic reconstructions. Int J Earth Sci (Geol Rundsch) 112, 2081–2096 (2023). https://doi.org/10.1007/s00531-023-02341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02341-2

Keywords

Navigation