Skip to main content
Log in

Rift domains and structural framework of the northwestern Red Sea basin, Egypt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Red Sea basin is considered one of the world-class examples of continental rifting, breakup and seafloor spreading. This study focuses on the structural framework of the northwestern part of the Egyptian Red Sea margin and the identification of the different rift domains using surface and subsurface data. Subsurface mapping using 2D seismic and borehole data indicates that the northern part of this area represents the continuation of the structural style of the southern Gulf of Suez rift as the mapped structures are mainly down to the northeast main faults with southwest dipping strata. In addition, two negative flower structures have been observed and represent the southern continuation of the Gulf of Aqaba -Dead Sea left-lateral transform fault system. The NE dip of the main rift-parallel faults that characterizes most of the study area flips in the southern part of the area (south of the Duwi accommodation zone) where the fault blocks dip northeastward and the main faults dip SW. Based on the integration of the structural style, continental crust stretching factor (β) and the crustal thickness, the northwestern margin of the Red Sea can be divided into proximal domain, necking domain and potential hyper-extended domain that seems to extend southeast of the area of study and may represent the future locus for oceanic crust development in the northern Red Sea. Each domain is characterized by a distinct structural style and subsidence profiles, and variable preservation and distribution of the pre-rift and syn-rift stratigraphic units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The wells and 2D seismic data that support the findings of this study are available from the Egyptian General Petroleum Corporation (EGPC). Restrictions apply to the availability of these data, which were used under the approval granted from EGPC to the corresponding author for PhD dissertation work.

References

  • Aboul Karamat (1987) Geological studies on the sedimentary succession of Esh El Mellaha Range. Dissertation, Cairo University

  • Afifi AS (2022) Structural framework and tectonic evolution of the northern part of the Red Sea Basin, Egypt. Dissertation, Ain Shams University

  • Afifi AS, Moustafa AR, Helmy HM (2016) Fault block rotation and footwall erosion in the southern Suez rift: implications for hydrocarbon exploration. Mar Petrol Geol 76:377–396. https://doi.org/10.1016/j.marpetgeo.2016.05.029

    Article  Google Scholar 

  • Ali M, Ligi M, Ceriani A, Bouchaala F, Bosworth W, Decarlis A (2022) Geophysical evidence for magmatism southwest of the Brothers Islands, northern Red Sea (offshore Quseir, Egypt). Tectonics 41:e2022TC007228. https://doi.org/10.1029/2022TC007228

    Article  Google Scholar 

  • Allen PA, Allen JR (2005) Basin analysis: principles and applications, 2nd edn. Blackwell, London

    Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2016) Incipient seafloor spreading segments: Insights from the Red Sea. Geophys Res Lett 43:2709–2715. https://doi.org/10.1002/2016GL068069

    Article  Google Scholar 

  • Baldwin S, White N, Müller R (2003) Resolving multiple rift phases by strain-rate inversion in the Petrel Sub-basin, northwest Australia. Geol Soc Aust Spec Publ 22:239–257

    Google Scholar 

  • Barberi F, Veret J (1970) The Erta’Afe volcanic range (Afar, Ethiopia). Volcanol Bull 34:848–917

    Article  Google Scholar 

  • Bonatti E, Colantoni P, Della Vedova B, Taviani M (1984) Geology of the Red Sea transitional region (22°–25°N). Oceanol Acta 7:385–398

    Google Scholar 

  • Bosworth W (2015) Geological evolution of the Red Sea: historical background, review, and synthesis. In: Rasul NMA, Stewart ICF (eds) The Res Sea. Springer earth system sciences, pp 45–78

  • Bosworth W, McClay KR (2001) Structural and stratigraphic evolution of the Neogene Gulf of Suez, Egypt: a synthesis. In: Cavazza W, Robertson AHF, Ziegler P (eds) Peritethyan Rift/Wrench basins and passive margins, Mémoires du Muséum National d’Histoire Naturelle de Paris, Peritethys Programme (PTP) and IGCP 369, Special Publication

  • Bosworth W, Stockli DF (2016) Early magmatism in the greater Red Sea rift: timing and significance. Can J Earth Sci 53:1158–1176. https://doi.org/10.1139/cjes-2016-0019

    Article  Google Scholar 

  • Bosworth W, Crevello P, Winn RD Jr, Steinmetz J (1998) Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and northwestern Red Sea. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins; Red Sea- Gulf of Aden. Chapman and Hall, London, pp 77–96

    Chapter  Google Scholar 

  • Bosworth W, Huchon P, McClay KH (2005) The Red Sea and Gulf of Aden Basins. J Afr Earth Sci 43:334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020

    Article  Google Scholar 

  • Bosworth, W, Khalil SM, Ligi M, Stockli DF, McClay KR (2020) Geology of Egypt: the northern Red Sea. In: Hamimi Z, El-Barkooky A, Martínez Frías J, Fritz H, Abd El-Rahman Y (eds) The geology of Egypt, regional geology reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-15265-9_9

  • Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite: comparison of petrographic features of modern, quaternary and Permian Halites. SEPM J Sedim Res 59:724–739. https://doi.org/10.1306/212f905c-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  • Chenin P, Manatschal G, Lavier LL, Erratt D (2015) Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. J Geol Soc Lond 172:711–720. https://doi.org/10.1144/jgs2014-139

    Article  Google Scholar 

  • Chenin P, Manatschal G, Picazo S, Müntener O, Karner G, Johnson C, Ulrich M (2017) Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13:1–18. https://doi.org/10.1130/GES01363.1

    Article  Google Scholar 

  • Chorowicz J (2005) The East African rift system. J Afr Earth Sci 43:379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019

    Article  Google Scholar 

  • Cochran JR (1983) A model for the development of the Red Sea. Am Assoc Petrol Geol Bull 67:41–69

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6:3. https://doi.org/10.1029/2004GC000826

    Article  Google Scholar 

  • Crane K, Bonatti E (1987) The role of fracture zones during early Red Sea rifting: structural analysis using Space Shuttle radar and LANDSAT imagery. J Geol Soc 144:407–420

    Article  Google Scholar 

  • Gaulier JM, LePichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics 153:25–54

    Article  Google Scholar 

  • Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23

    Article  Google Scholar 

  • Haase KM, Muhe R, Stoffers P (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chem Geol 166:225–239. https://doi.org/10.1016/S0009-2541(99)00221-1

    Article  Google Scholar 

  • Helmy HM (2018) Does the prolific Suez rift extend southward to the Red Sea? SEG Red Sea Exploration workshop Hurghada Egypt

  • Jarrige JJ, Ott d’Estevou P, Burollet PF, Montenat C, Richert JP, Thiriet JP (1990) The multistage tectonic evolution of the Gulf of Suez and northern Red Sea continental rift from field observations. Tectonics 9:441–465

    Article  Google Scholar 

  • Khalil SM, McClay KR (2001) Tectonic evolution of the NW Red Sea-Gulf of Suez rift system. Geol Soc Lond 187:453–473. https://doi.org/10.1144/GSL.SP.2001.187.01.22

    Article  Google Scholar 

  • Khalil S, McClay KR (2009) Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Mar Petrol Geol 26:1018–1034

    Article  Google Scholar 

  • Lavier LL, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328. https://doi.org/10.1038/nature04608

    Article  Google Scholar 

  • LeRoy S, Gente P, Fournier M, d’Acremont E, Patriat P, Beslier MO, Bellahsen N, Maia M, Blais A, Perrot J, Al-Kathiri A, Merkouriev S, Fleury JM, Ruellan PY, Lepvrier C, Huchon P (2004) From rifting to spreading in the eastern Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin. Terra Nova 16:185–192. https://doi.org/10.1111/j.1365-3121.2004.00550.x

    Article  Google Scholar 

  • Ligi M, Bonatti E, Caratori Tontini F, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil SM, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 39:1019–1022. https://doi.org/10.1130/G32243.1

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13:Q08009. https://doi.org/10.1029/2012GC004155

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bosworth B, Anna Cipriani Y, Palmiotto C, Ronca S, Seyler M (2018) Birth of an ocean in the Red Sea: oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res 54:150–160. https://doi.org/10.1016/j.gr.2017.11.002

    Article  Google Scholar 

  • Lyberis, N (1988) Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. In: Le Pichon X, Cochran JR (eds) The Gulf of Suez and Red Sea rifting. Tectonophysics 153:209–220

  • Masini E, Manatschal G, Mohn G (2013) The Alpine Tethys rifted margins: reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60:174–196

    Article  Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:20–32. https://doi.org/10.1016/0012-821X(78)90071-7

    Article  Google Scholar 

  • MDA Federal (2004) Landsat GeoCover ETM + 2000 Edition Mosaics. USGS

  • Miller PM, Barakat H (1988) Geology of the Safaga Concession, Northern Red Sea, Egypt. Tectonophysics 153:123–213

    Article  Google Scholar 

  • Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139

    Article  Google Scholar 

  • Mougenot D, Al-Shakhis AA (1999) Depth imaging sub-salt structures: a case study in the Midyan Peninsula (Red Sea). GeoArabia 4:335–463

    Article  Google Scholar 

  • Moustafa AR (1997) Controls on the development and evolution of transfer zones: the influence of basement structure and sedimentary thickness in the Suez rift and Red Sea. J Struct Geol 19:755–768

    Article  Google Scholar 

  • Moustafa AR (2020) Mesozoic-cenozoic deformation history of Egypt. In: Hamimi Z, El-Barkooky A, Martínez Frías J, Fritz H, Abd El-Rahman Y (eds) The geology of Egypt, regional geology reviews. Springer, pp 253–294. https://doi.org/10.1007/978-3-030-15265-9_7

  • Moustafa AR, Khalil SM (2020) Structural setting and tectonic evolution of the Gulf of Suez, NW Red Sea and Gulf of Aqaba rift systems. In: Hamimi Z, El-Barkooky A, Martínez Frías J, Fritz H, Abd El-Rahman Y(eds) The geology of Egypt, regional geology reviews. Springer, pp 296–342

  • NOAA National Geophysical Data Center (2009) ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. www.ncei.noaa.gov/maps/bathymetry/ Accessed 26 June 2020

  • Osmundsen PT, Ebbing J (2008) Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics 27:TC6016. https://doi.org/10.1029/2007TC002242

    Article  Google Scholar 

  • Osmundsen PT, Péron-Pinvidic G (2018) Crustal-scale fault interaction at rifted margins and the formation of domain-bounding breakaway complexes: insights from offshore Norway. Tectonics. https://doi.org/10.1002/2017TC004792

    Article  Google Scholar 

  • Pagli C, Wright TJ, Ebinger CJ, Yun S, Cann JR, Barnie T, Ayele A (2012) Shallow axial magma chamber at the slow-spreading Erta Ale Ridge. Nat Geosci 5:284–288. https://doi.org/10.1038/ngeo1414

    Article  Google Scholar 

  • Patton TL, Moustafa AR, Nelson RA, Abdine SA (1994) Tectonic evolution and structural setting of the Suez Rift. In: Landon SM (ed) Interior rift basins, Memoir 59. AAPG, pp 7–55

  • Peijs JMM, Bevan TG, Piombino JT (2012) The Gulf of Suez rift basin. In: Roberts DG, Bally AW(eds) Regional geology and tectonics: phanerozoic rift systems and sedimentary basins. Elsevier, pp 165–194

  • Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia–Newfoundland: a new point of view. Int J Earth Sci 98:1581–1597

    Article  Google Scholar 

  • Péron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Petrol Geol 43:21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002

    Article  Google Scholar 

  • Reston TJ (2009) The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics 468:6–27. https://doi.org/10.1016/j.tecto.2008.09.002

    Article  Google Scholar 

  • Reston TJ, McDermott KG (2011) Successive detachment faults and mantle unroofing at magma-poor rifted margins. Geology 39:1071–1074. https://doi.org/10.1130/G32428.1

    Article  Google Scholar 

  • Roeser A (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahrb Reihe D13:131–153

    Google Scholar 

  • Salem A, Green C, Campbell S, Fairhead JD, Cascone L, Moorhead L (2013) Moho depth and sediment thickness estimation beneath the Red Sea derived from satellite and terrestrial gravity data. Geophysics 78:89–101. https://doi.org/10.1190/GEO2012-0150

    Article  Google Scholar 

  • Sawyer DS, Coffin MF, Reston TJ, Stock JM, Hopper JR (2007) COBBOOM: the continental breakup and birth of oceans mission. Sci Drill 5:13–25. https://doi.org/10.2204/iodp.sd.5.02.2007

    Article  Google Scholar 

  • Schettino A, Macchiavelli C, Rasul NMA (2019) Plate motions around the red sea since the early oligocene. In: Rasul NMA, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, pp 203–220

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Steckler MS, Watts AB (1978) Subsidence of the Atlantic-type continental margin off New York. Earth Planet Sci Lett 41:1–13

    Article  Google Scholar 

  • Steckler MS, Watts AB (1980) The Gulf of Lion: subsidence of a young continental margin. Nature 287:425–429. https://doi.org/10.1038/287425a0

    Article  Google Scholar 

  • Steckler MS, Berthelot F, Lyberis N, Le Pichon X (1988) Subsidence in the Gulf of Suez: implications for rifting and plate kinematics. Tectonophysics 153:249–270

    Article  Google Scholar 

  • Stockli DF, Bosworth W (2019) Timing of extensional faulting along the Magma-Poor Central and Northern Red Sea Rift Margin—transition from regional extension to necking along a hyperextended rifted margin. In: Rasul NMA, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, pp 81–112

  • Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14:2575–2597. https://doi.org/10.1002/ggge.20135

    Article  Google Scholar 

  • Watts AB, Ryan WBF (1976) Flexure of the lithosphere and continental margin basins. Tectonophysics 36:25–44

    Article  Google Scholar 

  • Watts AB, Steckler MS (1979) Subsidence and Eustasy at the continental margin of eastern North America. Am Geophys Union 3:218–239

    Google Scholar 

  • White N (1993) Recovery of strain rate variation from inversion of subsidence data. Nature 366:449–452

    Article  Google Scholar 

  • White N (1994) An inverse method for determining lithospheric strain rate variation on geological timescales. Earth Planet Sci Lett 122:351–371

    Article  Google Scholar 

  • Whitmarsh RB, Manatschal G (2012) Evolution of magma poor continental margins: from rifting to the onset of seafloor spreading. In: Roberts DG, Bally AW (eds) Regional geology and tectonics: phanerozoic passive margins, cratonic basins and global tectonic maps, vol 1C. Elsevier, Amsterdam, pp 327–341. https://doi.org/10.1016/B978-0-444-56357-6.00008-1

  • Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117:846–864

    Article  Google Scholar 

  • Younes AI, McClay KR (2002) Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bull 86:1003–1026

    Google Scholar 

  • Youssef A (2011) Early-Middle Miocene Suez Syn-rift-Basin, Egypt: a sequence stratigraphy framework. GeoArabia 16:113–134

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Exploration Department at the Gulf of Suez Petroleum Company (GUPCO) and the Egyptian General Petroleum Corporation (EGPC) for providing the data used for this study. We would also like to thank two anonymous reviewers whose suggestions have considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Afifi.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afifi, A.S., Moustafa, A.R. & Helmy, H.M. Rift domains and structural framework of the northwestern Red Sea basin, Egypt. Int J Earth Sci (Geol Rundsch) 112, 2049–2064 (2023). https://doi.org/10.1007/s00531-023-02340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02340-3

Keywords

Navigation