Skip to main content
Log in

Petrological and chemical evidence for polybaric differentiation across the preserved middle crustal plutonic column of the Famatinian arc, Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study investigates the formation of the middle layer of the Earth's crust in the Early Ordovician Famatinian arc. We focus on the Valle Fértil–La Huerta batholith, which provides a unique exposure of continuous lower to middle crustal depths, spanning approximately 14 km. The assembly of this batholith took place over a period of approximately 6 million years (473–467 Ma). We collected whole-rock and mineral geochemical data at different emplacement pressures, ranging from < 4 to 7 kbar. Our results indicate that amphiboles crystallized within a temperature range of 774–873 °C but exhibited chemical disequilibrium with the surrounding rocks. Both whole-rock and mineral chemistry provide evidence of plagioclase and amphibole accumulation during magmatic differentiation. Examining the vertical distribution of plutonic rocks, we observe a compositional trend showing decreasing concentrations of MgO, Sr, Sc, and Dy/Yb with decreasing paleo-depths. A comparative analysis of the REE patterns yields that plutonic rocks in the shallow middle crust contain amphibole crystal cores inherited from deeper crustal levels. Moreover, the trace-element compositions of the amphiboles yield valuable insights into the coexistence of distinct magma compositions at different levels within the middle crust. Importantly, mantle-derived mafic rocks with high-Sr/Y ratios are attributed to plagioclase accumulation rather than the presence of garnet as a residual phase. Our study suggests that fractional crystallization played a significant role in the generation and evolution of the Famatinian intermediate crust. Further differentiation occurred through mixing between tonalitic magmas and intra-crustal metasedimentary-derived melts in the middle crust. The findings highlight the importance of variable melt extraction in shaping the petrological stratification of arc crustal columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data is available in the supplementary material.

References

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Miner Petrol 157(4):541–558

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Astini RA, Dávila FM (2004) Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics 23:4

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  Google Scholar 

  • Bachmann O, Huber C (2019) The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J Petrol 60(1):3–18

    Article  Google Scholar 

  • Barnes CG, Memeti V, Coint N (2016) Deciphering magmatic processes in calc-alkaline plutons using trace element zoning in hornblende. Am Miner 101(2):328–342

    Article  Google Scholar 

  • Barnes CG, Berry R, Barnes MA, Ernst WG (2017) Trace element zoning in hornblende: tracking and modeling the crystallization of a calc-alkaline arc pluton. Am Miner 102(12):2390–2405

    Article  Google Scholar 

  • Barnes CG, Werts K, Memeti V, Ardill K (2019) Most granitoid rocks are cumulates: deductions from hornblende compositions and zircon saturation. J Petrol 60(11):2227–2240

    Article  Google Scholar 

  • Beard JS, Ragland PC, Crawford ML (2005) Using incongruent equilibrium hydration reactions to model latter-stage crystallization in plutons: examples from the Bell Island Tonalite. Alaska J Geol 113(5):589–599

    Article  Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2023) Garnet stability in arc basalt, andesite, and dacite—an experimental study. Contrib Miner Petrol 178(6):33

    Article  Google Scholar 

  • Blundy J (2022) Chemical differentiation by mineralogical buffering in crustal hot zones. J Petrol 63(7):54

    Article  Google Scholar 

  • Brackman AJ, Schwartz JJ (2022) The formation of high-Sr/Y plutons in cordilleran-arc crust by crystal accumulation and melt loss. Geosphere 18(2):370–393

    Google Scholar 

  • Camilletti G, Otamendi J, Tibaldi A, Cristofolini E, Leisen M, Romero R, Barzola M (2020) Geology, petrology and geochronology of sierra Valle Fértil-La Huerta batholith: Implications for the construction of a middle-crust magmatic-arc section. J South Am Earth Sci 97:102423

    Article  Google Scholar 

  • Carty K, Schwartz JJ, Wiesenfeld J, Klepeis KA, Stowell HH, Tulloch AJ, Barnes CG (2021) The Generation of Arc Andesites and Dacites in the Lower Crust of a Cordilleran Arc, Fiordland, New Zealand. J Petrol 62(9):43

    Article  Google Scholar 

  • Cashman KV, Sparks RS, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:3055

    Article  Google Scholar 

  • Chapman JB, Ducea MN, DeCelles PG, Profeta L (2015) Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43(10):919–922

    Article  Google Scholar 

  • Chiaradia M (2015) Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci Rep 5(1):1–5

    Article  Google Scholar 

  • Coint N, Barnes CG, Yoshinobu AS, Barnes MA, Buck S (2013) Use of trace element abundances in augite and hornblende to determine the size, connectivity, timing, and evolution of magma batches in a tilted batholith. Geosphere 9(6):1747–1765

    Article  Google Scholar 

  • Coira B, Kirschbaum A, Hongn F, Pérez B, Menegatti N (2009) Basic magmatism in northeastern Puna, Argentina: chemical composition and tectonic setting in the Ordovician back-arc. J S Am Earth Sci 28(4):374–382

    Article  Google Scholar 

  • Cornet J, Bachmann O, Ganne J, Fiedrich A, Huber C, Deering CD, Feng X (2022) Assessing the effect of melt extraction from mushy reservoirs on compositions of granitoids: from a global database to a single batholith. Geosphere 15:24

    Google Scholar 

  • Cristofolini E, Otamendi J, Walker B Jr, Tibaldi A, Armas P, Bergantz G, Martino R (2014) A Middle Paleozoic shear zone in the Sierra de Valle Fértil, Argentina: Records of a continent-arc collision in the Famatinian margin of Gondwana. J S Am Earth Sci 56:170–185

    Article  Google Scholar 

  • Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Article  Google Scholar 

  • Deering CD, Bachmann O (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett 297(1–2):324–331

    Article  Google Scholar 

  • Ducea M, Bergantz G, Crowley J, Otamendi J (2017) Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45:235–238

    Article  Google Scholar 

  • Edmonds M, Cashman KV, Holness M, Jackson M (2019) Architecture and dynamics of magma reservoirs. Phil Trans R Soc A 377(2139):20180298

    Article  Google Scholar 

  • Ellis BS, Wolff JA, Szymanowski D, Forni F, Cortes-Calderon EA, Bachmann O (2023) Cumulate recycling in igneous systems: the volcanic record. Lithos 2:107284

    Article  Google Scholar 

  • Ganne J, Bachmann O, Feng X (2018) Deep into magma plumbing systems: interrogating the crystal cargo of volcanic deposits. Geology 46(5):415–418

    Article  Google Scholar 

  • Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98(1–4):118–140

    Article  Google Scholar 

  • Graham B, Dunning G, Leitch AM (2020) Magma mushes of the Fogo Island Batholith: a study of magmatic processes at multiple scales. J Petrol 2:2

    Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geoth Res 136(3–4):169–198

    Article  Google Scholar 

  • Humphreys MC, Cooper GF, Zhang J, Loewen M, Kent AJ, Macpherson CG, Davidson JP (2019) Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contrib Miner Petrol 174(1):9

    Article  Google Scholar 

  • Klein BZ, Jagoutz O (2021) Construction of a trans-crustal magma system: building the Bear Valley Intrusive Suite, southern Sierra Nevada California. Earth Planet Sci Lett 553:116624

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CE, Birch WD, Gilbert MC, Grice JD, Youzhi G (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61(405):295–310

    Article  Google Scholar 

  • Marsh BD (1996) Solidification fronts and magmatic evolution. Mineral Mag 60(398):5–40

    Article  Google Scholar 

  • Müntener O, Ulmer P (2018) Arc crust formation and differentiation constrained by experimental petrology. Am J Sci 318(1):64–89

    Article  Google Scholar 

  • Mutch EJF, Blundy JD, Tattitch BC, Cooper FJ, Brooker RA (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Miner Petrol 171(10):1–27

    Article  Google Scholar 

  • Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Miner Petrol 171(8–9):71

    Article  Google Scholar 

  • Niemeyer H, Götze J, Sanhueza M, Portilla C (2018) The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitudes. J S Am Earth Sci 81:204–214

    Article  Google Scholar 

  • Otamendi J, Ducea M, Tibaldi A, Bergantz G, de la Rosa J, Vujovich G (2009) Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. J Petrol 50:841–873

    Article  Google Scholar 

  • Otamendi JE, Cristofolini E, Tibaldi AM, Quevedo FI, Baliani I (2010) Petrology of mafic and ultramafic layered rocks from the Jaboncillo Valley, Sierra de Valle Fértil, Argentina: implications for the evolution of magmas in the lower crust of the Famatinian arc. J S Am Earth Sci 29(3):685–704

    Article  Google Scholar 

  • Otamendi J, Ducea M, Bergantz G (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. J Petrol 53:761–800

    Article  Google Scholar 

  • Otamendi JE, Tiepolo M, Walker BA Jr, Cristofolini EA, Tibaldi AM (2016) Trace elements in minerals from mafic and ultramafic cumulates of the central Sierra de Valle Fértil, Famatinian arc, Argentina. Lithos 240:355–370

    Article  Google Scholar 

  • Otamendi J, Ducea M, Cristofolini E, Tibaldi A, Camilletti G, Bergantz G (2017) U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina. J S Am Earth Sci 76:412–426

    Article  Google Scholar 

  • Otamendi JE, Cristofolini EA, Morosini A, Armas P, Tibaldi AM, Camilletti GC (2020) The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°–33° south). J South Am Earth Sci 2:102558

    Article  Google Scholar 

  • Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH, Kirsch M, DeCelles PG (2015) Quantifying crustal thickness over time in magmatic arcs. Sci Rep 5(1):1–7

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858

    Article  Google Scholar 

  • Putirka KD (2017) Down the crater: where magmas are stored and why they erupt. Elements 13:11–16

    Article  Google Scholar 

  • Ramos VA (2018) The Famatinian orogen along the protomargin of Western Gondwana: evidence for a nearly continuous Ordovician magmatic arc between Venezuela and Argentina. The evolution of the Chilean-Argentinean andes. Springer, Cham, pp 133–161

    Google Scholar 

  • Rapela C, Pankhurst R, Casquet C, Dahlquist J, Fanning C, Baldo E, Galindo C, Ramacciotti C, Verdecchia S, Murra J, Basei M (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Sci Rev 187:259–285

    Article  Google Scholar 

  • Rezeau H, Klein BZ, Jagoutz O (2021) Mixing dry and wet magmas in the lower crust of a continental arc: new petrological insights from the Bear Valley Intrusive Suite, southern Sierra Nevada California. Contrib Miner Petrol 176(9):1–25

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130° C and 22 GPa. Contrib Miner Petrol 163(5):877–895

    Article  Google Scholar 

  • Saal AE (1993) El basamento cristalino de la Sierra de Paganzo, provincia de La Rioja, Argentina (Doctoral dissertation, Doctoral Thesis, Univ. Nac. Córdoba)

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110(2):304–310

    Article  Google Scholar 

  • Tibaldi AM, Álvarez-Valero AM, Otamendi JE, Cristofollini EA (2011) Formation of paired pelitic and gabbroic migmatites: an empirical investigation of the consistency of geothermometers, geobarometers, and pseudosections. Lithos 122(1–2):57–75

    Article  Google Scholar 

  • Tibaldi A, Otamendi J, Cristofolini E, Baliani I, Walker B Jr, Bergantz G (2013) Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics 589:151–166

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67(1):417–452

    Article  Google Scholar 

  • Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1· 0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59(1):11–58

    Article  Google Scholar 

  • Walker B Jr, Bergantz G, Otamendi J, Ducea M, Cristofolini E (2015) A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J Petrol 56:1863–1896

    Article  Google Scholar 

  • Wanke M, Karakas O, Bachmann O (2019) The genesis of arc dacites: the case of Mount St Helens, WA. Contrib Mineral Petrol 174(1):7

    Article  Google Scholar 

  • Werts K, Barnes CG, Memeti V, Ratschbacher B, Williams D, Paterson SR (2020) Hornblende as a tool for assessing mineral-melt equilibrium and recognition of crystal accumulation. Am Miner J Earth Planet Mater 105(1):77–91

    Google Scholar 

  • Zhang J, Humphreys MC, Cooper GF, Davidson JP, Macpherson CG (2017) Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles. Am Miner J Earth Planet Mater 102(6):1353–1367

    Google Scholar 

  • Zhou JS, Yang ZS, Hou ZQ, Wang Q (2020) Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: implications for the role of amphibole fractionation during magma evolution. Am Miner J Earth Planet Mater 105(2):262–275

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank professors Herve Rezeau and Joshua Schwartz for their thoughtful and helpful peer reviews. This research was supported by FONCyT grants PICT0296/17 and PICT0056/19. Fieldwork was partly funded by grants from the Universidad Nacional de Río Cuarto, Argentina. Prof. Jesus de la Rosa enabled us to measure mineral composition (EPMA) and whole-rock (ICP-MS) at the University of Huelva, Spain. Trace elements in minerals were determined at Brown University, USA through LA-ICP-MS analysis supported by NSF-EAR 1829464 to A. Saal. Laboratory work was funded through fellowships granted by: (1) Fulbright—Foundation (USA) and Fundacion Bunge & Born (Argentina), and 2) Asociación Universitaria Iberoamericana de Postgrado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Camilletti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camilletti, G.C., Otamendi, J.E., Escribano, F.A. et al. Petrological and chemical evidence for polybaric differentiation across the preserved middle crustal plutonic column of the Famatinian arc, Argentina. Int J Earth Sci (Geol Rundsch) 112, 2025–2047 (2023). https://doi.org/10.1007/s00531-023-02339-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02339-w

Keywords

Navigation