Skip to main content

Advertisement

Log in

The Santo Domingo fault system, Galeana (Nuevo Leon): evidence of neotectonics between the Sierra Madre Oriental and the Basin and Range provinces and hazard implications for northeastern Mexico

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Neotectonic activity in the western margin of the Sierra Madre Oriental in northeastern Mexico was evaluated using geomorphological, geological, structural, and seismological analyses. We evaluated recent tectonic evidence in the basin of the Potosí Valley related to the Santo Domingo Fault System (SDFS), which is one of the largest active extensional fault zones documented so far in the transition zone between the Basin and Range and the Sierra Madre Oriental provinces. Two indices were used in the geomorphological analysis: transverse topographic basin asymmetry (T) and mountain front sinuosity (Smf). The results show that the studied basin is slightly tilted to the WSW, consistent with the typical basin deformation pattern in the Basin and Range province. Structural data collected in the field unveil a NW–SE striking fault system, geometrically and kinematically similar to the Cenozoic lineaments of the Basin and Range province. The local stress tensor calculated in this study indicates an extensional tectonic regime, suggesting \({S}_{V }> {S}_{NW} > {S}_{NE}\). Analysis defines an azimuth trend of 298° and 036° for \({\sigma }_{2}({S}_{Hmax})\) and \({\sigma }_{3}\left({S}_{hmin}\right)\), respectively. According to the results, the SDFS is well orientated for possible future reactivation as a normal fault system. We estimate that a segmented rupture of the SDFS could produce seismic events on the order of magnitude 5 < Mw < 6. Considering a continuous rupture (~ 42 km) of the SDFS in a single event, an earthquake of Mw 7.0 could be expected. The results are essential to estimate seismic hazards in northeastern Mexico, including important urban areas, such as Monterrey, Nuevo León, and Saltillo, Coahuila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali SA, Ikbal J (2020) Assessment of relative active tectonics in parts of Aravalli mountain range, India: implication of geomorphic indices, remote sensing, and GIS. Arab J Geosci 13:1–16

    Article  Google Scholar 

  • Amezcua Torres N (2003) Análisis de la Cuenca lacustre del Potosí y sus peligros geológicos asociados a la materia orgánica sedimentaria, Nuevo León, Mx: (M.S Tesis). Universidad Autónoma de Nuevo León, Linares, México

  • Anderson EM (1951) The dynamics of faulting and dike formation with application to Britain, 2nd edn. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Angelier J (1984) Tectonic analysis of fault slip data sets. J Geophys Res Solid Earth 89:5835–5848

    Article  Google Scholar 

  • Angelier J (1989) From orientation to magnitudes in paleostress determinations using fault slip data. J Struct Geol 11:37–50

    Article  Google Scholar 

  • Angelier J (1994) Fault slip analysis and paleostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon, Oxford, pp 101–120

    Google Scholar 

  • Angelier J, Mechler P (1977) Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. B Soc Geol Fr 7:1309–1318

    Article  Google Scholar 

  • Bartolini C, Mickus K (2001) Tectonic blocks, magmatic arcs, and Oceanic Terrains: a preliminary interpretation based on gravity, outcrop, and subsurface data, Northeastcentral Mexico. AAPG Memoirs 75:29–44

    Google Scholar 

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:09–117

    Article  Google Scholar 

  • Bull WB (2007) Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology, Blackwell Publishing

  • Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring DO (ed) Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium. State University of New York, Binghamton, pp 115–138

  • Burbank DW, Anderson RS (2012) Tectonic geomorphology. Blackwell Science

    Google Scholar 

  • Comisión Federal de Electricidad CFE (2015) Manual de Diseño de Obras Civiles. Capítulo C.1.3 Diseño por Sismo (In Spanish), México

  • Comisión Nacional del Agua (CONAGUA) (2022) Regiones hidrológicas. https://www.gob.mx/conagua. Accessed Feb 2023

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi embayment. Geol Soc Am Bull 106:571–581

    Article  Google Scholar 

  • Cox RT, Van Arsdale RB, Harris JB (2001) Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage-basin asymmetry. Geol Soc Am Bull 113:615–624

    Article  Google Scholar 

  • Dehbozorgi M, Pourkermani M, Arian M, Matkan AA, Motamedi H, Hosseiniasl A (2010) Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 121:329–341

    Article  Google Scholar 

  • Delvaux D (2006) Wintensor, Version 1.3.75, Royal Museum for Central Africa, Tervuren, Belgium Dept Geology—Mineralogy

  • Delvaux D, Moeys R, Stapel G, Melnikov A, Ermikov V (1995) Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and mesozoic pre-rift evolution. Tectonophysics 252:61–101

    Article  Google Scholar 

  • Díaz-Torres JJ, Fletcher JM, Spelz-Madero RM, Martín-Barajas A, Suárez-Vidal F (2012) Geomorfometría del Escarpe Principal del Golfo de California. Análisis comparativo entre dos segmentos del Rift: Sierra San Pedro Mártir y Sierra Juárez, Baja California. México Rev Mex Cienc Geol 29:590–610

    Google Scholar 

  • Dickinson WR, Lawton TF (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol Soc Am Bull 113:1142–1160

    Article  Google Scholar 

  • Doser D (1987) The 16 August 1931 Valentine, Texas, earthquake: evidence for normal faulting in west Texas. Bull Seismol Soc Am 77:2005–2017

    Google Scholar 

  • Doser D, Rodríguez J (1993) The seismicity of Chihuahua, Mexico, and the 1928 Parral earthquake. Phys Earth Planet Inter 78:97–104

    Article  Google Scholar 

  • Eguiluz De Antuñano S, Aranda-García M, Marrett R (2000) Tectónica de la Sierra Madre Oriental. México Bol Soc Geol Mex 53:1–26

    Article  Google Scholar 

  • El Hamdouni R, Irigaray C, Fernandez T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of Sierra Nevada (southern Spain). Geomorphology 96:150–173

    Article  Google Scholar 

  • Fitz-Díaz E, Lawton TF, Juárez-Arriaga E, Chávez-Cabello G (2018) The Cretaceous-Paleogene Mexican orogen: structure, basin development, magmatism and tectonics. Earth Sci Rev 183:56–84

    Article  Google Scholar 

  • Galván-Ramírez IN, Montalvo-Arrieta JC (2008) The historical seismicity and prediction of ground motion in Northeast Mexico. J S Am Earth Sci 25:37–48

    Article  Google Scholar 

  • García Acosta V, Suárez Reynoso G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, México (In Spanish)

    Google Scholar 

  • Goldhammer RK (1999) Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico. In: Bartolini C, Wilson JL, Lawton TF (eds) Mesozoic sedimentary and tectonic history of north-central Mexico, vol 340. Geological Society of America Special Paper, Boulder, pp 1–58

    Chapter  Google Scholar 

  • Gómez-Arredondo CM, Montalvo-Arrieta JC, Iglesias-Mendoza A, Espindola-Castro VH (2016) Relocation and seismotectonic interpretation of the seismic swarm of august–december of 2012 in the Linares area, northeastern Mexico. Geofis Int 55:95–106

    Google Scholar 

  • Henry CD, Aranda-Gomez JJ (1992) The real southern Basin and Range: mid- to late-Cenozoic extension in Mexico. Geology 20:701–704

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía, INEGI (2020) Censo de Población y Vivienda. https://www.inegi.org.mx/programas/ccpv/2020/. Accessed 8 June 2022

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes, uplift and landscape. Prentice Hall, Hoboken

    Google Scholar 

  • Machette MN, Personius SF, Nelson AR, Schwartz DP, Lund WR (1991) The Wasatch fault zone, Utah—segmentation and history of Holocene earthquakes. J Struct Geol 13:137–149

    Article  Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci Front 3:407–428

    Article  Google Scholar 

  • Martini M, Ortega-Gutiérrez F (2016) Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: a review. Earth-Sci Rev 183:38–55

    Article  Google Scholar 

  • Mazzotti S (2007) Geodynamic models for earthquake studies in intraplate North America. In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues, vol 425. Geological Society of America Special Paper, pp 17–33

    Google Scholar 

  • Mickus K, Montana C (1999) Crustal structure of northeastern Mexico revealed through the analysis of gravity data. In: Bartolini C, Wilson JL, Lawton TF (eds) Mesozoic sedimentary and tectonic history of North-Central Mexico, vol 340. Geological Society of America Special Paper, Boulder, pp 357–371

    Chapter  Google Scholar 

  • Montalvo Arrieta JC, León Gómez HD, Valdés González C (2006) LNIG: Nueva estación sísmica digital en el noreste de México. Ingenierías 9:17–24

    Google Scholar 

  • Montalvo-Arrieta JC, Sosa-Ramírez RL, Paz-Martínez EG (2015) Relationship between MMI data and ground shaking in the State of Nuevo León, northeastern Mexico. Seismol Res Lett 86:1489–1495

    Article  Google Scholar 

  • Montalvo-Arrieta JC, Pérez-Campos X, Ramos-Zuñiga L, Paz-Martínez E, Salinas-Jasso J, Navarro-de León I, Ramírez-Fernández J (2018) El Cuchillo Seismic sequence of october 2013–july 2014 in the burgos Basin, Northeastern Mexico: hydraulic fracturing or reservoir-induced seismicity? Bull Seismol Soc Am 108:3092–3106

    Article  Google Scholar 

  • Montalvo‐Arrieta JC, Pérez-Campos X, Ramos Zúñiga LG, Salinas-Jasso JA, Paz-Martínez EG, Martínez Jiménez LD (2019) 12 años de monitoreo sísmico en el Noreste de México, retos y realidades (In Spanish). Conference Paper, Sociedad Mexicana de Ingeniería Sísmica, Monterrey, N. L. 1–12

  • Natali S, Sbar M (1982) Seismicity in the epicentral region of the 1887 northeastern Sonora earthquake, Mexico. Bull Seismol Soc Am 72:181–196

    Google Scholar 

  • Padilla y Sánchez RJ (1985) Las estructuras de la Curvatura de Monterrey, Estados de Coahuila, Nuevo León, Zacatecas y San Luis Potosí. Rev Mex Cienc Geol 6:1–20

    Google Scholar 

  • Padilla y Sánchez RJ, Domínguez Trejo I, López Azcárraga AG, Mota Nieto J, Fuentes Menes AO, Rosique Naranjo F, Germán Castelán EA, Campos Arriola SE (2013) National Autonomous University of Mexico Tectonic Map of Mexico GIS Project, AAPG GIS Open Files series

  • Pfiffner OA, Ramsay JG (1982) Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks. J Geophys Res Solid Earth 87:311–321

    Article  Google Scholar 

  • Ramírez-Fernández JA, Alemán-Gallardo EA, Cruz-Castillo D, Velasco-Tapia F, Jenchen U, Becchio R, Casas-Peña JM (2021) Early Mississippian precollisional, peri-Gondwanan volcanic arc in NE-Mexico: aserradero Rhyolite from Ciudad Victoria, Tamaulipas. Int J Earth Sci 110:2435–2463

    Article  Google Scholar 

  • Ramírez-Herrera MT (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt. Earth Surf Process Landf 23:317–332

    Article  Google Scholar 

  • Ramos Zúñiga LG, Medina-Ferrusquía HC, Montalvo-Arrieta JC (2012a) Patrones de Sismicidad en la curvatura de Monterrey, noreste de México. Rev Mex Cienc Geol 29:572–589

    Google Scholar 

  • Ramos-Zuñiga LG, Montalvo-Arrieta JC, Pérez-Campos X, Valdés-González C (2012b) Seismic characterization of station LNIG as a reference site in northeast Mexico. Geofis Int 51:187–197

    Google Scholar 

  • Rockwell TK, Keller EA, Johnson DL (1985) Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa M (ed.) Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers, Boston, MA, pp. 183–207

  • Rodriguez-Pimienta M (2003) Estudio Gravimetrico en el Valle El Potosi, Galeana, Nuevo León, México. Bachelor Thesis. Universidad Autónoma de Nuevo León, Linares, México

  • Roy PD, Rivero-Navarrete A, Hernández-Juárez NL, Sánchez-Zavala JL, Sankar GM, Lozano-Santacruz R (2015) Chapter 4—Peat fires in Northeastern Mexico: geochemistry, chronology, and paleoreconstruction. Coal and peat fires: a global perspective. Elsevier Science, Amsterdam, pp 75–88. https://doi.org/10.1016/B978-0-444-59510-2.00004-5

    Chapter  Google Scholar 

  • Silva PG (1994) Evolución geodinámica de la depresión del Guadalentín desde el Mioceno superior hasta la Actualidad: Neotectónica y geomorfología. Ph.D. Dissertation, Complutense University, Madrid.

  • Sosa-Ramírez RL, Paz-Martínez EG, Montalvo-Arrieta JC (2021) The Mw 6.2w Punta Santa Elena (Coahuila-Zacatecas) earthquake of 28 april 1841, the largest documented pre-instrumental event and its implications on seismic hazard in Northeastern Mexico. J Seismol 25:477–485

    Article  Google Scholar 

  • Stewart JA (1978) Basin–range structure in western North America, a review. In: Smith RB, Eaton GP (eds) Cenozoic tectonics and regional geophysics of the Western Cordillera, vol 152. Geol Soc Am Memoir, New York, pp 1–13

    Chapter  Google Scholar 

  • Suter M (1991) State of stress and active deformation in Mexico and western Central America. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America. Decade map, vol 1. Geological Society of America, Boulder, pp 401–421

    Google Scholar 

  • Suter M, Contreras J (2002) Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw7.4 Earthquake. Bull Seismol Soc Am 92:581–589

    Article  Google Scholar 

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wells SG, Bullard TF, Menges CM, Drake PG, Karas PA, Kelson KI, Ritter JB, Wesling JR (1988) Regional variations in tectonic geomorphology along a segmented convergent plate boundary, Pacific coast of Costa Rica. Geomorphology 1:239–265

    Article  Google Scholar 

  • Williams SA, Singleton JS, Prior MG, Mavor SP, Cross GE, Stockli DF (2021) The early Palaeogene transition from thin-skinned to thick-skinned shortening in the Potosí uplift, Sierra Madre Oriental, northeastern Mexico. Int Geol Rev 63:233–263

    Article  Google Scholar 

  • Xie J (1998) Spectral inversion of Lg from earthquakes: a modified method with applications to the 1995, Western Texas earthquake sequence. Bull Seismol Soc Am 88:1525–1537

    Article  Google Scholar 

  • Yonkee WA, Weil AB (2015) Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth Sci Rev 150:531–593

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the Servicio Geológico Mexicano (SGM) for freely providing the geological maps used in this work, the Instituto Nacional de Estadística, Geografía e Informática (INEGI) for providing the 5-m DEM used to generate the topographic profiles and the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service) for providing access to earthquake catalog between the 1900 and 2022 period. Station maintenance, data acquisition, and distribution are thanks to its personnel. Also, the authors thank Damien Devaulx for the "Win-Tensor" software for calculating the study area's stress tensor.

Funding

This research was partially funded by Universidad Autónoma de Nuevo León PAICYT/UANL 2020-2022 under the projects CT1251-2020, CT1629-21, and 48-CAT-2022.

Author information

Authors and Affiliations

Authors

Contributions

ILG-S, JCM-A, JAS-J, and JAR-F designed the study and participated in the fieldwork. ILG-S performed the data analysis. ILG-S and JCM-A wrote the paper. All authors revised the manuscript.

Corresponding author

Correspondence to Juan Carlos Montalvo-Arrieta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauna-Sauceda, I.L., Montalvo-Arrieta, J.C., Salinas-Jasso, J.A. et al. The Santo Domingo fault system, Galeana (Nuevo Leon): evidence of neotectonics between the Sierra Madre Oriental and the Basin and Range provinces and hazard implications for northeastern Mexico. Int J Earth Sci (Geol Rundsch) 112, 1957–1972 (2023). https://doi.org/10.1007/s00531-023-02334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02334-1

Keywords

Navigation