Skip to main content

Advertisement

Log in

Contrasting fluoride contents in mountain rivers of the Andean foreland of Argentina: the influence of A-type peraluminous granites

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Water–rock interactions are one of the main factors that control water quality in rivers worldwide. Hydro-geochemical analyses from mountain rivers of the North of the Sierra de Velasco (Argentina), in combination with petrological studies of the granitic rocks, suggest that A-type plutons are one of the main fluorine suppliers in surface waters that drain these granitic terrains. In the rivers of the northern sector of the study area, the dissolved F is above 1.72 mg L−1 and reach up to 3.65 mg L−1, while in the southern sector the values range between 0.27 and 1.05 mg L−1. Conversely, there are no significant differences in the major hydrochemistry of the studied rivers, since all the waters are diluted (TDS: 36–116 mg L−1), slightly alkaline (pH: 7.50–8.16), of bicarbonate-calcium type, and with no seasonal influence of precipitation. The elevated values of F in waters spatially match the F-rich A-type strongly peraluminous granite of La Costa Pluton. Fluorine in this unit is five to ten times higher than in the S-type peraluminous granite from the southern sector, and is mainly hosted in micas and fluorapatite. The higher dissolved trace elements and REE in the northern sector, also match the different lithological sources. Therefore, the identification of A-type peraluminous granites in a catchment area could be used as a petrological indicator to predict a possible high fluoride content in river waters. Additionally, high fluoride values in surface waters could be a valuable proxy of the presence of A-type plutons in the nearby region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adimalla N, Venkatayogi S (2017) Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environ Earth Sci 76:45. https://doi.org/10.1007/s12665-016-6362-2

    Article  Google Scholar 

  • Akuno MH, Nocella G, Milia EP, Gutierrez L (2019) Factors influencing the relationship between fluoride in drinking water and dental fluorosis: a ten-year systematic review and meta-analysis. J Water Health 17(6):845–862. https://doi.org/10.2166/wh.2019.300

    Article  Google Scholar 

  • Alasino PH, Dahlquist JA, Galindo C, Casquet C (2006) Plutón La Costa, una expresión de magmatismo tipo-S en el sector noreste de la sierra de Velasco, Sierras Pampeanas, Argentina. Rev Asoc Geol Argent 61(2):161–170

    Google Scholar 

  • Alasino PH, Dahlquist JA, Galindo C, Casquet C, Saavedra J (2010) Andalusite and Na- and Li- rich cordierite in the La Costa pluton, Sierras Pampeanas, Argentina: textural and chemical evidence for a magmatic origin. Int J Earth Sci 99:1051–1065. https://doi.org/10.1007/s00531-009-0445-1

    Article  Google Scholar 

  • Alasino PH, Dahlquist JA, Pankhurst RJ, Galindo C, Casquet C, Rapela CW, Larrovere MA, Fanning CM (2012) Early carboniferous sub-to mid-alkaline magmatism in the Eastern Sierras Pampeanas, NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Res 22(3–4):992–1008

    Article  Google Scholar 

  • Alasino PH, Larrovere MA, Rocher S, Dahlquist JA, Basei MAS, Memeti V, Paterson S, Galindo C, Grande MM, da CostaCamposNeto M (2017) Incremental growth of an upper crustal, A-type pluton, Argentina: evidence of a re-used magma pathway. Lithos 284–285:347–366. https://doi.org/10.1016/j.lithos.2017.04.013

    Article  Google Scholar 

  • Ali S, Thakur SK, Sarkar A, Shekhar S (2016) Worldwide contamination of water by fluoride. Environ Chem Letters 14:291–315. https://doi.org/10.1007/s10311-016-0563-5

    Article  Google Scholar 

  • Ali G, Bashir MK, Abbas S, Murtaza M (2021) Drinking-water efficiency, cost of illness, and peri-urban society: an economic household analysis. PloS one 16(9):e0257509. https://doi.org/10.1371/journal.pone.0257509

    Article  Google Scholar 

  • Arya S, Subramani T, Vennila G, Karunanidhi D (2021) Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin. South India Environ Geochem Health 43(2):705–716. https://doi.org/10.1007/s10653-019-00489-y

    Article  Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Et Cosmochim Acta 65(3):387–406

    Article  Google Scholar 

  • Báez MA, Fogliata AS, Campos F, Hagemann SG, Raineri NI (2014) Nuevos aportes a la caracterización geoquímica del granito San Ignacio-Los Pinos, provincias de Catamarca y Tucumán. Acta Geol Lilloana 26(2):111–122

    Google Scholar 

  • Bakker K (2012) Water security: research challenges and opportunities. Science 337(6097):914–915. https://doi.org/10.1126/science.1226337

    Article  Google Scholar 

  • Bellos LI, Castro A, Díaz-Alvarado J, Toselli A (2015) Multi-pulse cotectic evolution and in-situ fractionation of calc-alkaline tonalite–granodiorite rocks, Sierra de Velasco batholith, Famatinian belt. Argentina Gondwana Res 27(1):258–280. https://doi.org/10.1016/j.gr.2013.09.019

    Article  Google Scholar 

  • Berger T, Peltola P, Drake H, Åström M (2012) Impact of a fluorine-rich granite intrusion on levels and distribution of fluoride in a small boreal catchment. Aquat Geochem 18:77–94. https://doi.org/10.1007/s10498-011-9151-2

    Article  Google Scholar 

  • Berger T, Mathurin FA, Drake H, Åström ME (2016) Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks. Sci of the Total Environ 569:948–960. https://doi.org/10.1016/j.scitotenv.2016.06.002

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97(1–2):1–29. https://doi.org/10.1016/j.lithos.2006.12.007

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. Developments in geochem, vol 2. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Byrne RH, Sholkovitz ER (1996) Marine chemistry and geochemistry of the lanthanides. Handbook Phys Chem Rare Earths 23:497–593

    Article  Google Scholar 

  • Chae GT, Yun ST, Kwon MJ, Kim YS, Mayer B (2006) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem J 40:95–102. https://doi.org/10.2343/geochemj.40.95

    Article  Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Kim K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci of the Total Environ 385:272–283. https://doi.org/10.1016/j.scitotenv.2007.06.038

    Article  Google Scholar 

  • Chaïrat C, Oelkers EH, Schott J, Lartigue JE (2007) Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations. Geochim Et Cosmochim Acta 71:5888–5900. https://doi.org/10.1016/j.gca.2007.09.026

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite; experimental constraints. Am Mineralogist 71(3–4):317–324

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80(2):189–200. https://doi.org/10.1007/BF00374895

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin Limited, London, p 450. https://doi.org/10.1180/minmag.1981.44.333.23

    Book  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19(2):163–166. https://doi.org/10.1130/0091-7613(1991)019%3c0163:ATGRAO%3e2.3.CO;2

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121(3–4):271–291. https://doi.org/10.1016/S0377-0273(02)00465-1

    Article  Google Scholar 

  • Dahlquist JA, Colombo F, Murra JA, Locati F, Alasino PH, Baldo E, Verdecchia S (2010a) El stock álcali-feldespático El Pilón (Sierra Brava, La Rioja): un ejemplo de magmatismo granítico turmalinífero. Rev Asoc Geol Argent 67(3):369–382

    Google Scholar 

  • Dahlquist JA, Alasino PH, Eby GN, Galindo C, Casquet C (2010b) Fault controlled carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115:65–81. https://doi.org/10.1016/j.lithos.2009.11.006

    Article  Google Scholar 

  • Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatismin the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineral Petrol 108:391–417. https://doi.org/10.1007/s00710-013-0308-0

    Article  Google Scholar 

  • Dahlquist JA, Pankhurst RJ, Rapela CW, Basei MAS, Alasino PH, Saavedra J, Baldo EG, da MurraCostaCamposNeto JAM (2016) The Capilla del Monte pluton, Sierras de Córdoba, Argentina: the easternmost early carboniferous magmatism in the pre-Andean SW Gondwana margin. Int J Earth Sci 105:1287–1305. https://doi.org/10.1007/s00531-015-1249-0

    Article  Google Scholar 

  • Dahlquist JA, Alasino PH, Basei MAS, Morales Cámera M, Macchioli Grande M, da CostaCamposNeto M (2018) Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian—early Carboniferous magmatism in SW Gondwana (27–32° LS): an example of geodynamic switching. Int J Earth Sci (geol Rundsch) 107:2575–2603. https://doi.org/10.1007/s00531-018-1615-9

    Article  Google Scholar 

  • Dahlquist JA, Morales Cámera MM, Alasino PH, Pankhurst RJ, Basei MA, Rapela CW, Moreno JA, Baldo EG, Galindo C (2021) A review of Devonian-carboniferous magmatism in the central region of Argentina, pre-Andean margin of SW Gondwana. Earth Sci Rev 221:103781

    Article  Google Scholar 

  • Dai S, Li W, Tang Y, Zhang Y, Feng P (2007) The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China. Appl Geochem 22:1017–1024. https://doi.org/10.1016/j.apgeochem.2007.02.011

    Article  Google Scholar 

  • Dall’Agnol R, Frost CD, Rämö OT (2012) A-type granites and related rocks through time. Lithos 151:1

    Article  Google Scholar 

  • Dávila FM, Astini RA, Jordan TE, Gehrels G, Ezpeleta M (2007) Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west-central Argentina. Tectonics. https://doi.org/10.1029/2007TC002118

    Article  Google Scholar 

  • de Los Hoyos CR, Willner AP, Larrovere MA, Rossi JN, Toselli AJ, Basei MAS (2011) Tectonothermal evolution and exhumation history of the Paleozoic Proto-Andean Gondwana margin crust: the Famatinian Belt in NW Argentina. Gondwana Res 20(2–3):309–324. https://doi.org/10.1016/j.gr.2010.12.004

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/DHZ

  • DenBesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96. https://doi.org/10.1159/000327028

    Article  Google Scholar 

  • Dorais MJ, Lira R, Chen Y, Tingey D (1997) Origin of biotite-apatite-rich enclaves, Achala batholith, Argentina. Contrib Min Petrol 130:31–46

    Article  Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, vol 437. Prentice hall, Englewood Cliffs

    Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(1–2):115–134. https://doi.org/10.1016/0024-4937(90)90043-Z

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20(7):641–644

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J of Petrol 52(1):39–53

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Fuge R (2019) Fluorine in the environment, a review of its sources and geochemistry. Appl Geochem 100:393–406. https://doi.org/10.1016/j.apgeochem.2018.12.016

    Article  Google Scholar 

  • Gadgil A (1998) Drinking water in developing countries. Ann Rev Energy Environ 23(1):253–286

    Article  Google Scholar 

  • Gaillardet J, Louvat P, Lajeunesse E (2011) Rivers from volcanic island arcs: the subduction weathering factory. Appl Geochem 26:S350–S353

    Article  Google Scholar 

  • Ganoulis J, Aureli A, Fried J (eds) (2013) Transboundary water resources management: a multidisciplinary approach. John Wiley & Sons, Hoboken

    Google Scholar 

  • Gao P, Garcia-Arias M, Chen YX, Zhao ZF (2020) Origin of peraluminous A-type granites from appropriate sources at moderate to low pressures and high temperatures. Lithos 352:105287

    Article  Google Scholar 

  • García MG, Borgnino L (2015) Fluoride in the context of the environment. In: Preddy V (ed) Fluorine: chemistry, analysis, function and effects. The Royal Society of Chemistry, pp 3–21. https://doi.org/10.1039/9781782628507-00003

  • García MG, Lecomte KL, Pasquini AI, Formica SM, Depetris PJ (2007) Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina). Geochim Cosmochim Acta 71:5355–5368. https://doi.org/10.1016/j.gca.2007.09.017

    Article  Google Scholar 

  • García MG, Lecomte KL, Stupar Y, Formica SM, Barrionuevo M, Vesco M, Gallará R, Ponce R (2012) Geochemistry and health aspects of F-rich mountainous streams and groundwaters from Sierras Pampeanas de Córdoba, Argentina. Environ Earth Sci 65:535–545. https://doi.org/10.1007/s12665-011-1006-z

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  • González Bonorino F (1950) Algunos problemas geológicos de las Sierras Pampeanas. Rev De La Asoc Geol Argentina 5(3):6–110

    Google Scholar 

  • Gouveia MA, Prudencio MI, Figueiredo MO, Pereira LCJ, Waerenborgh JC, Morgado I, Lopes A (1993) Behavior of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal. Chem Geol 107(3–4):293–296

    Article  Google Scholar 

  • Grandjean P (2019) Developmental fluoride neurotoxicity: an updated review. Environ Health. https://doi.org/10.1186/s12940-019-0551-x

    Article  Google Scholar 

  • Grosse P, Söllner F, Báez MA, Toselli AJ, Rossi JN, de La Rosa JD (2009) Lower carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U-Pb monazite geochronology, geochemistry and Sr–Nd isotopes. Int J Earth Sci 98(5):1001–1025. https://doi.org/10.1007/s00531-007-0297-5

    Article  Google Scholar 

  • Grosse P, Bellos LI, de los Hoyos CR, Larrovere MA, Rossi J, Toselli AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type early Ordovician granitoids of the Sierra de Velasco. J South Am Earth Sci 32:110–126. https://doi.org/10.1016/J.JSAMES.2011.03.014

    Article  Google Scholar 

  • Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175(3–4):495–508

    Article  Google Scholar 

  • Hirzy JW, Connett P, Xiang Q, Spittle B, Kennedy D (2018) Developmental neurotoxicity of fluoride: a quantitative risk analysis toward establishing a safe dose for children. In: McDuffie JE (ed) Neurotoxins. IntechOpen, London, pp 115–132. https://doi.org/10.5772/intechopen.70852

    Chapter  Google Scholar 

  • Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Research 93(B4):3211–3231

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina; a modern analogue of Rocky mountain foreland deformation. Am J Sci 286(10):737–764

    Article  Google Scholar 

  • Jury WA, Vaux J (2005) The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci 102(44):15715–15720. https://doi.org/10.1073/pnas.0506467102

    Article  Google Scholar 

  • Khandare AL, Gourineni SR, Validandi V (2017) Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir. India Environ Monit Assess 189:579. https://doi.org/10.1007/s10661-017-6288-5

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan fold belt. Southeast Aust J Petrol 38(3):371–391. https://doi.org/10.1093/petroj/38.3.371

    Article  Google Scholar 

  • Kitalika AJ, Machunda RL, Komakech HC, Njau KN (2018) Fluoride variations in rivers on the slopes of mount Meru in Tanzania. J Chem. https://doi.org/10.1155/2018/7140902

    Article  Google Scholar 

  • Larrovere MA, Alasino PH, Baldo EG (2016) La faja de cizalla dúctil doble-vergente del noroeste de la Sierra de Velasco, Argentina: Deformación de la corteza media durante la Orogenia Famatiniana. Rev De La Asoc Geol Argen 73(1):117–133

    Google Scholar 

  • Lee EJ, Schwab KJ (2005) Deficiencies in drinking water distribution systems in developing countries. J Water Health 3(2):109–127. https://doi.org/10.2166/wh.2005.0012

    Article  Google Scholar 

  • Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am Abstracts Programs 11:468

    Google Scholar 

  • López JP, Grosse P, Toselli AJ (2007) Faja de Deformación La Horqueta, Sierra de Velasco, Sierras Pampeanas, NO de Argentina: petrografía, geoquímica, estructuras y significado tectónico. Consejo Superior Investigaciones Científicas Estudios Geológicos 63(2):5–18

    Google Scholar 

  • Larquin NL, Rubio EZ, González Vale L (2015) Efectos de la ingestión prolongada de altas concentraciones de fluoruros. Rev 16 de Abril, 54 (260), 83–94. Recovered from http://www.rev16deabril.sld.cu/index.php/16_04/article/view/339

  • Macchioli Grande M, Alasino P, Dahlquist J, Morales Cámera M, Galindo C, Basei M (2021) Thermal maturation of a complete magmatic plumbing system at the Sierra de Velasco. Northwest Argentina Geol Mag 158(3):537–554. https://doi.org/10.1017/S0016756820000692

    Article  Google Scholar 

  • MacDougall P, Milburn MP (2004) Using solar energy to treat microbiologically contaminated water: a multidisciplinary approach to public health and aboriginal science education. Environ Health Rev, pp 38–43

  • Machender G, Dhakate R, Reddy N (2014) Hydrochemistry of groundwater (GW) and surface water (SW) for assessment of fluoride in Chinnaeru river basin, Nalgonda district, (AP) India. Environ Earth Sci 72:4017–4034

    Article  Google Scholar 

  • Malago J, Makoba E, Muzuka AN (2017) Fluoride levels in surface and groundwater in Africa: a review. Am J Water Sci Eng 3(1):1–17

    Article  Google Scholar 

  • McGuire AV, Francis CA, Dyar MD (1992) Mineral standards for electron microprobe analysis of oxygen. Am Min 77(9–10):1087–1091

    Google Scholar 

  • McLennan SM (1989) Rare-earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. Rev Mineral Geochem 21(1):169–200

    Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  • Moel PJ, Verberk JQ, Van Dijk JC (2006) Drinking water: principles and practices. World Scientific, New Jersey

    Book  Google Scholar 

  • Morales Cámera MM, Dahlquist JA, Basei MAS, Galindo C, da CostaCamposNetoFacetti MN (2017) F-rich strongly peraluminous A-type magmatism in the pre-Andean Foreland Sierras Pampeanas, Argentina: geochemical, geochoronological, isotopic constraints and petrogenesis. Lithos 277:210–227. https://doi.org/10.1016/j.lithos.2016.10.035

    Article  Google Scholar 

  • Morales Cámera MM, Dahlquist JA, Garcia-Arias M, Moreno JA, Galindo C, Basei MA, Molina JF (2020) Petrogenesis of the F-rich peraluminous A-type granites: An example from the Devonian Achala batholith (Characato Suite) Sierras Pampeanas Argentina. Lithos 378:105792. https://doi.org/10.1016/j.lithos.2020.105792

    Article  Google Scholar 

  • More S, Dhakate R, Ratnalu GV, Machender G (2021) Hydrogeochemistry and health risk assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District, Telangana State, India. Environ Earth Sci 80:1–18

    Article  Google Scholar 

  • Morey GB, Setterholm DR (1997) Rare earth elements in weathering profiles and sediments of Minnesota; implications for provenance studies. J of Sedim Res 67(1):105–115

    Google Scholar 

  • Oliva P, Dupré B, Martin F, Viers J (2004) The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibère, France): chemical and mineralogical evidence. Geoch Cosmochim Acta 68(10):2223–2244. https://doi.org/10.1016/j.gca.2003.10.043

    Article  Google Scholar 

  • Ozsvath DL (2006) Fluoride concentrations in a crystalline bedrock aquifer Marathon County. Wisconsin Environ Geol 50(1):132–138. https://doi.org/10.1007/s00254-006-0192-6

    Article  Google Scholar 

  • Padhi S, Muralidharan D (2012) Fluoride occurrence and mobilization in geo-environment of semi-arid Granite watershed in southern peninsular India. Environ Earth Sci 66:471–479. https://doi.org/10.1007/s12665-011-1255-x

    Article  Google Scholar 

  • Pasquini AI, Grosso LB, Mangeaud AP, Depetris PJ (2002) Geoquímica de ríos de montaña en las Sierras Pampeanas: I. Vertientes y arroyos del batolito de Achala, provincia de Córdoba, Argentina. Rev De La Asoc Geol Argentina 57(4):437–444

    Google Scholar 

  • Pichel N, Vivar M, Fuentes M (2019) The problem of drinking water access: a review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere 218:1014–1030. https://doi.org/10.1016/j.chemosphere.2018.11.205

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25:914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Railsback LB (1993) A Geochemical view of weathering and the origin of sedimentary rocks and natural waters. J Geol Educ 41(5):404–411. https://doi.org/10.5408/0022-1368-41.5.404

    Article  Google Scholar 

  • Raju NJ (2017) Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: geochemistry and health implications. Quat Int (part b) 443:265–278. https://doi.org/10.1016/j.quaint.2016.05.028

    Article  Google Scholar 

  • Rasmussen B, Buick R, Taylor WR (1998) Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth Planet Sci Lett 164(1–2):135–149

    Article  Google Scholar 

  • Rasool A, Farooqi A, Xiao T, Ali W, Noor S, Abiola O, Ali S, Nasim W (2018) A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ Geochem Health 40:1265–1281. https://doi.org/10.1007/s10653-017-0054-z

    Article  Google Scholar 

  • Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL (2010) Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District. India Chem Geol 269:278–289. https://doi.org/10.1016/j.chemgeo.2009.10.003

    Article  Google Scholar 

  • Reynard B, Lécuyer C, Grandjean P (1999) Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem Geol 155(3–4):233–241

    Article  Google Scholar 

  • Rice EW, Baird RB, Eaton AD, Clesceri L (2012) Standard methods for the examination of water and wastewater, Am Water Works Assn, 2nd edn. Water Environ Federation, Washington DC

    Google Scholar 

  • Rodriguez-Mozaz S, Weinberg HS (2010) Meeting report: pharmaceuticals in water—an interdisciplinary approach to a public health challenge. Environ Health Perspect 118(7):1016–1020. https://doi.org/10.1289/ehp.0901532

    Article  Google Scholar 

  • Rossi JN, Toselli AJ, López JP (1999) Deformación y metamorfismo en el noroeste de la sierra de Velasco, La Rioja. Argentina Zbl Geol Paläontol 1:839–850

    Google Scholar 

  • Rossi JN, Toselli AJ, Báez MA (2005) Evolución termobárica del ortogneis peraluminoso del noroeste de la sierra de Velasco, La Rioja. Rev De La Asoc Geol Argen 60:278–289

    Google Scholar 

  • Shah TM, Danishwar S (2003) Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province, Pakistan. Environ Geochem Health 25:475–481

    Article  Google Scholar 

  • Shand SJ (1927) On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geol Magazine 64(10):446–449

    Article  Google Scholar 

  • Shitumbanuma V, Tembo F, Tembo JM, Chilala S, Van Ranst E (2007) Dental fluorosis associated with drinking water from hot springs in Choma district in southern province, Zambia. Environ Geochem Health 29:51–58

    Article  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquatic Geochem 1:1–34

    Article  Google Scholar 

  • Singh PP, Barjatiya MK, Dhing S, Bhatnagar R, Kothari S, Dhar V (2001) Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urol Res 29(4):238–244. https://doi.org/10.1007/s002400100192

    Article  Google Scholar 

  • Skjerlie KP, Johnston AD (1993) Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. J Petrol 34(4):785–815

    Article  Google Scholar 

  • Srivastava S, Flora S (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Envir Health Rpt 7:140–146. https://doi.org/10.1007/s40572-020-00270-9

    Article  Google Scholar 

  • Stevens Goddard AL, Larrovere MA, Carrapa B, Aciar RH, Alvarado P (2018) Reconstructing the thermal and exhumation history of the Sierras Pampeanas through low-temperature thermochronology: a case study from the Sierra de Velasco. GSA Bull 130(11–12):1842–1858. https://doi.org/10.1130/B31935.1

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London, Special Publ 42(1):313–345

    Article  Google Scholar 

  • Taunton AE, Welch SA, Banfield JF (2000) Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chem Geol 169(3–4):371–382

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. United States: N. p. Web

  • Tischendorf G, Gottesmann B, Förster HJ, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Min Magazine 61(409):809–834

    Article  Google Scholar 

  • Tischendorf G, Förster HJ, Gottesmann B (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Min Magazine 63(1):57–74

    Article  Google Scholar 

  • Toselli AJ, Rossi JN, Miller H, Báez M, Grosse P, López JP, Bellos L (2005) The granitic and metamorphic rocks in the Sierra de Velasco/Las rocas graniticas y metamorficas de la Sierra de Velasco. Instituto Superior De Correlacion Geologica, Serie Correlacion Geol 19:211–221

    Google Scholar 

  • Toselli AJ, Rossi JN, Basei MAS, Larrovere M (2011) Controles geoquímicos e isotópicos en la petrogénesis de los granitos Devónico-Carboníferos Santa Cruz y Asha: Sierra de Velasco, Argentina. Serie Correlación Geol 27(2):77–98

    Google Scholar 

  • Trumbull RB, Harris C, Frindt S, Wigand M (2004) Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis. Lithos 73(1–2):21–40

    Article  Google Scholar 

  • Uran GM, Larrovere MA, Alasino PH, Rocher S, Pereyra F (2018) Una mega-zona de cizalla dúctil en la Sierra de Velasco: Nuevas evidencias para la caracterización de la faja Señor de la Punta-El Cantadero. In Rocher S et al. (eds) Actas de la XVII Reunión de Tectónica (La Rioja, Argentina), p 77

  • Uran GM, Pasquini AI, Giampaoli V, Larrovere MA, Cortés Montiel MF, Pautasso RE (2022) Hydrochemistry of mountain rivers in the Sierra de Velasco, La Rioja, Argentina: implications on dental fluorosis through statistical modeling. Sustain Water Resour Manag 8:167. https://doi.org/10.1007/s40899-022-00745-7

    Article  Google Scholar 

  • Viers J, Oliva P, Dandurand JL, Dupré B, Gaillardet J (2014) Chemical weathering rates, CO2 consumption, and control parameters deduced from the chemical composition of rivers. In: Holland HD, Turekian KK (eds) Treatise on geochemistry (second edition), vol 7. Elsevier, pp 175–194. https://doi.org/10.1016/B978-0-08-095975-7.00506-4

  • Vila Tello M, Larrovere MA, Moreno GG, Rocher S, Alasino PH, Aciar RH (2019) Estructura, cinemática y condiciones de la deformación de la faja de cizalla Pinchas: evidencias de la fase tectónica Oclóyica en la sierra de Velasco. Rev de la Asoc Geol Argen, 76; 4; 12–2019; 403–412. Recovered from https://ri.conicet.gov.ar/handle/11336/128672

  • Wang LX, Ma CQ, Zhang C, Zhu YX, Marks MAW (2017) Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): insights into the elevated fluorine in A-type granite. Chem Geol. https://doi.org/10.1016/j.chemgeo.2017.09.033

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419. https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, 4th ed., vol 216, Geneva. https://www.who.int/publications/i/item/9789241549950

  • Wright J, Gundry S, Conroy R (2004) Household drinking water in developing countries: a systematic review of microbiological contamination between source and point-of-use. Tropical Med Int Health 9(1):106–117. https://doi.org/10.1046/j.1365-3156.2003.01160.x

    Article  Google Scholar 

  • Yuan L, Fei W, Jia F, Jun-ping L, Qi L, Fang-ru N, Xu-dong L, Shu-lian X (2020) Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125451

    Article  Google Scholar 

  • Zandomeni PS, Moreno JA, Verdecchia SO, Baldo EG, Dahlquist JA, Morales Cámera MM, Lembo Wuest CI (2021) Crystallization conditions and petrogenetic characterization of metaluminous to peraluminous Calc-Alkaline orogenic granitoids from mineralogical systematics: the case of the Cambrian Magmatism from the Sierra de Guasayán (Argentina). Minerals 11(2):166. https://doi.org/10.3390/min11020166

    Article  Google Scholar 

  • Zen EA (1986) Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J of Petrol 27(5):1095–1117

    Article  Google Scholar 

  • Zhang L, Zhao L, Zeng Q, Fu G, Feng B, Lin X, Liu Z, Wang Y, Hou C (2020) Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124811

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely want to thank Dr. Pablo Alasino for providing information and material from his own personal research projects. We are grateful to the technicians from CRILAR-CONICET and CICTERRA-CONICET-UNC for the technical support in the preparation of the rock samples. The authors also thank the operators of the LAMARX Laboratory: Dr. Sebastián Verdecchia, Dr. Alina Guereschi, Dr. Fernando Colombo and Dr. Manuel Demartis. The authors also acknowledge the people who collaborated in the field works: T. Fariñas, V. Reinoso, F. Morinigo, H. Aciar and C. Bustamante. G. M. Uran acknowledges a doctoral fellowship from CONICET.

Funding

This work has been carried out with funds from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PUE-0125 and PIP 112-201701-00088), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2017-2026), the Universidad Nacional de La Rioja (CICYT-042), and the Universidad Nacional de Córdoba (SECyT-UNC 33620180100385CB).

Author information

Authors and Affiliations

Authors

Contributions

GMU: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing, visualization. MAL: conceptualization, investigation, resources, writing—original draft, writing—review and editing, funding acquisition. AIP: conceptualization, investigation, resources, writing—review and editing, funding acquisition. MMG: conceptualization, investigation, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Gimena M. Uran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

531_2023_2332_MOESM1_ESM.xlsx

Supplementary file1 ESM_1. Representative composition of garnet of La Costa Pluton and Antinaco Orthogneiss units from electron microprobe (XLSX 13 KB)

531_2023_2332_MOESM2_ESM.xlsx

Supplementary file2 ESM_2. Representative composition of tourmaline of La Costa Pluton unit from electron microprobe. H2O, B2O3 and Li2O were calculated by stoichiometry. OH+F = 4 a.p.f.u.; B = 3 a.p.f.u.; Li = 15-total(T+Z+Y) (XLSX 12 KB)

531_2023_2332_MOESM3_ESM.xlsx

Supplementary file3 ESM_3. Representative composition of fluorapatite of La Costa Pluton unit from electron microprobe (XLSX 11 KB)

531_2023_2332_MOESM4_ESM.xlsx

Supplementary file4 ESM_4. Rare earth elements and elemental relationships calculated for the dissolved REE of the studied waters: LaN/YbN, GdN/NdN and GdN/YbN. The sum of rare earth elements (ΣREE) and the europium anomaly are also presented. (Eu/Eu*)N = EuN/(SmN*GdN)0.5 (McLennan 1989). The subscript N indicates that the values are normalized to the CCS (McLennan 2001) (XLSX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uran, G.M., Larrovere, M.A., Pasquini, A.I. et al. Contrasting fluoride contents in mountain rivers of the Andean foreland of Argentina: the influence of A-type peraluminous granites. Int J Earth Sci (Geol Rundsch) 112, 1997–2024 (2023). https://doi.org/10.1007/s00531-023-02332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02332-3

Keywords

Navigation