Skip to main content

Advertisement

Log in

Two karst events bounding drastic changes in the Neoproterozoic Tandilia Basin history, Argentina: paleogeographic relevance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The sedimentary infill of the Tandilia Basin is characterised by at least four different stages of deposition during the Neoproterozoic (< 1160 to ~ 550 Ma), two of them recognisable in the Sierras Bayas Group and two in the La Providencia Group. The Villa Mónica Formation, representing the first stage of basin infill (< 1160 to < 720 Ma), consists of a lower siliciclastic section that passes transitionally into an upper dolostone section. This dolostone platform, rich in standard Cryogenian stromatolites, was interpreted as deposited under typical cold, suboxic to oxic seawater conditions. A detailed analysis of the dolostone section allowed us to distinguish two karst events imprinted in the formation. The hypogene karst genesis is interpreted as hydrothermal with the development of Mn-oxide dykes associated with intense silicification and brecciation of the host dolostones. The younger epigene karst, which developed over the post uplifted unit, is related to intense weathering and subaerial exposure with the generation of an irregular surface in its upper contact. This unconformity, known as the Piedra Amarilla Surface, is represented regionally in the Tandilia System. It may have implied a post-uplift period of erosion, dissolution and non-deposition that predates the accumulation of the ~ 400-m-thick overlying succession (the Sierras Bayas and La Providencia groups). Accordingly, the Piedra Amarilla Surface may represent a large spatio-temporal interval bounding two contrasting histories in the basin infill, which would justify separating the Villa Mónica Formation from the Sierras Bayas Group. This karst-related surface may be considered a fingerprint of the transition from the break-up of Rodinia to the configuration of southwestern Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data contained in the manuscript will be available on request.

References

  • Algeo TJ, Wilkinson BH, Lohmann KC (1992) Meteoric-burial diagenesis of Middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: water–rock interactions and basin geothermics. J Sediment Petrol 62:652–670

    Google Scholar 

  • Allan JR, Mattews RK (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology 29:797–817

    Article  Google Scholar 

  • Alvarenga CJS, Santos RV, Vieira LC, Lima BAF, Mancini LH (2014) Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil. Precambr Res 251:164–180

    Article  Google Scholar 

  • Arrouy MJ, Gómez-Peral LE (2021) Exposing the inside of the fine-grained siliciclastic tidal shelf deposits of the Alicia Formation, Tandilia Basin, during the Ediacaran anoxia in the Clymene Ocean. J S Am Earth Sci 10:102945. https://doi.org/10.1016/j.jsames.2020.102945

    Article  Google Scholar 

  • Arrouy MJ, Warren LV, Quaglio F, Poiré DG, Guimarães Simões M, Boselli MR, Gómez-Peral LE (2016) Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Sci Rep 6(30590):1–10. https://doi.org/10.1038/srep30590

    Article  Google Scholar 

  • Arrouy MJ, Gaucher C, Poiré DG, Xiao S, Gómez-Peral LE, Warren LV, Bykova N, Quaglio F (2019) A new record of late Ediacaran acritarchs from La Providencia group (Tandilia System, Argentina) and its biostratigraphical significance. J S Am Earth Sci 93:283–293. https://doi.org/10.1016/j.sames.2019.05.015

    Article  Google Scholar 

  • Azmy K, Veizer J, Misi A, de Oliveira TF, Lima Sanches A, Dardenne MA (2001) Dolomitization and isotope stratigraphy of the Vazante Formation, Sao Francisco Basin, Brazil. Precambr Res 112:303–329

    Article  Google Scholar 

  • Bai H, Kuang H, Liu Y, Peng N, Chen X, Wang Y (2020) Marinoan-aged red beds at Shennongjia, South China: evidence against global-scale glaciation during the Cryogenian. Palaeogeogr Palaeoclimatol Palaeoecol 559:109967

    Article  Google Scholar 

  • Basei MAS, Frimmel HE, Campos Neto MdaC, de Araujo CEG, de Castro NA, Passarelli CR (2018) The Tectonic History of the Southern Adamastor Ocean Based on a Correlation of the Kaoko and Dom Feliciano Belts. In: Siegesmund S, Basei MAS, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana. Regional Geology Reviews, Cham, pp 63–85

    Chapter  Google Scholar 

  • Batten KL, Narbonne GM, James NP (2004) Paleoenvironments and growth of early Neoproterozoic calcimicrobial reefs: platformal Little Dal Group, northwestern Canada. Precambr Res 133:149–169

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr Res 79:37–55

    Article  Google Scholar 

  • Beier JA (1987) Petrographic and geochemical analysis of caliche profiles in a Bahamian Pleistocene dune. Sedimentology 34:991–998

    Article  Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and the adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Article  Google Scholar 

  • Blake TS, Rothery E, Muhling JR, Drake-Brockman JAP, Sprigg LC, Ho SE, Rasmussen B, Fletcher IR (2011) Two episodes of regional-scale Precambrian hydrothermal alteration in the eastern Pilbara, Western Australia. Precambr Res 188:73–103

    Article  Google Scholar 

  • Brown G, Brindley GW (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 305–359

    Chapter  Google Scholar 

  • Byrne RH, Kim KH (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656. https://doi.org/10.1016/0016-7037(90)90002-3

    Article  Google Scholar 

  • Cavalcanti JAD (2022) Neoproterozoic-Cambrian structures as a guide to the evolution of the Bambuí karst in the Vieira River basin, Montes Claros, North of Minas Gerais, Brazil. J Geol Surv Brazil 5(1):21–47

    Article  Google Scholar 

  • Cawood PA, Buchan C (2007) Linking accretionary orogenesis with supercontinent assembly. Earth Sci Rev 82:217–256

    Article  Google Scholar 

  • Cazarin CL, Bezerra FHR, Borghi L, Santos RV, Favoreto J, Brod JA, Auler AS, Srivastava NK (2019) The conduit-seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil. Mar Pet Geol 101:90–107

    Article  Google Scholar 

  • Che Z, Tan X, Deng J, Jin M (2019) The characteristics and controlling factors of facies-controlled coastal eogenetic karst: insights from the Fourth Member of Neoproterozoic Dengying Formation, Central Sichuan Basin, China. Carbonates Evaporites 34:1771–1783. https://doi.org/10.1007/s13146-019-00524-0

    Article  Google Scholar 

  • Chernicoff CJ, Zappettini EO, Santosh JOS, Godeas MC, Belousova E, McNaughton NJ (2011) Identification and isotopic studies of Early Cambrian magmatism (El Carancho Igneous Complex) at the boundary between Pampia terrane and the Rio de la Plata craton, La Pampa province Argentina. Gondwana Res 15:10. https://doi.org/10.1016/j.gr.2011.04.007

    Article  Google Scholar 

  • Christiansen RO, Ballivián Justiniano CA, Oriolo S, Gianni GM, García HPA, Martinez MP, Kostadinoff J (2021) Crustal architecture and tectonic evolution of the southernmost Río de la Plata Craton and its Neoproterozoic-Paleozoic sedimentary cover: Insights from 3D litho-constrained stochastic inversion models. Precambr Res 362:106307. https://doi.org/10.1016/j.precamres.2021.106307

    Article  Google Scholar 

  • Cingolani C (2011) The Tandilia System of Argentina as a southern extension of the Río de La Plata Craton: an overview. Int J Earth Sci 100:221–242

    Article  Google Scholar 

  • Cingolani C, Bonhomme MG (1988) Resultados geocronológicos en niveles pelíticos intercalados en las dolomías de Sierras Bayas (Grupo La Tinta), provincia de Buenos Aires. Segundas Jornadas Geológicas Bonaerenses. Buenos Aires, Argentina, pp 283–289

    Google Scholar 

  • Cingolani CA, Hartmann LA, Santos JOS, McNaughton NJ (2002) U-Pb SHIMP dating of zircons from the Buenos Aires Complex of the Tandilia Belt, Rio de La Plata Craton, Argentina. In: Actas XV Congreso Geológico Argentino, El Calafate

  • Cloud P, Dardenne M (1973) Proterozoic age of the Bambuí Group in Brazil. Geol Soc Am Bull 84(5):1673–1676

    Article  Google Scholar 

  • Coe A (2003) The sedimentary record of sea-level change. Open University Press, Cambridge, p 287

    Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Soc Am Bull 108:16–42

    Article  Google Scholar 

  • Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sediment Petrol 36:491–505

    Google Scholar 

  • Dristas JA, Martínez JC, van den Kerkhof AM et al (2017) Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt). Argent J South Am Earth Sci 76:182–197

    Article  Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991. https://doi.org/10.1016/0016-7037(90)90432-K

    Article  Google Scholar 

  • Esteban M, Wilson JL (1993) Introduction to karst system and Paleokarst reservoirs. In: In: Fritza RD, Wilson JL, Yurewicz DA (eds) Paleokarst related hydrocarbon reservoirs, vol 18. SEMP Core workshop, pp 1–9

  • Evans BW, Guggenheim S (1991) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Review in mineralogy, vol 19. Mineral Society of America, EEUU, Chelsea, pp 225–294

    Google Scholar 

  • Flügel E (2009) Microfacies of carbonate rocks. Analysis, interpretation and application, 2nd edn. Springer-Verlag, Berlin, p 984. https://doi.org/10.1007/10.1007/978-3-642-03796-2

    Chapter  Google Scholar 

  • Font E, Ponte Neto CF, Ernesto M (2011) Paleomagnetism and Rock Magnetism of the Neoproterozoic Itjai Basin of the Río de la Plata craton (Brazil): Cambrian to Cretaceous widespread remagnetization of South American. Gondwana Res. https://doi.org/10.1016/j.gr.2011.04.005

    Article  Google Scholar 

  • Fouke BW, Everts AW, Zwart EW, Schilager W, Smalley PC, Weisert H (1996) Subaerial exposure unconformities on the Vercors carbonate platform (SE France) and their sequence stratigraphic significance. Geol Soc Am Spec Publ 104:295–320

    Article  Google Scholar 

  • Gaucher C, Poiré DG, Gómez-Peral LE, Chiglino L (2005) Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de La Plata (Uruguay y Argentina). Latin Am J Sedimentol Basin Anal 12(2):145–160

    Google Scholar 

  • Gaucher C, Finney SC, Poiré DG, Valencia VA, Grove M et al (2008) Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precambr Res 167:150–170

    Article  Google Scholar 

  • Giddings JA, Wallace MW, Woon EMS (2009) Interglacial carbonates of the Cryogenian Umberatana Group, northern Flinders Ranges, South Australia. Aust J Earth Sci 56:907–925

    Article  Google Scholar 

  • Goldstein RH (1991) Stable isotope signatures associated with palaeosols, Pennsylvanian Holder Formation, New Mexico. Sedimentology 38:67–77

    Article  Google Scholar 

  • Gómez-Peral LE, Poiré DG, Strauss H, Zimmermann U (2007) Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina. Chem Geol 237:127–146. https://doi.org/10.1016/j.chemgeo.2006.06.022

    Article  Google Scholar 

  • Gómez-Peral LE, Raigemborn MS, Poiré DG (2011) Petrología y evolución diagenética de las facies silicoclásticas del Grupo Sierras Bayas, Sistema de Tandilia, Argentina. Lat Am J Sedimentol Basin Anal 18(1):3–41

    Google Scholar 

  • Gómez-Peral LE, Kaufman AJ, Poiré DG (2014) Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambr Res 252:88–106. https://doi.org/10.1016/j.precamres.2014.07.009

    Article  Google Scholar 

  • Gómez-Peral LE, Sial AN, Arrouy MJ, Richiano S, Ferreira VP, Kaufman AJ, Poiré DG (2017) Paleoclimatic and paleoenvironmental evolution of the Early Neoproterozoic basal dolomitic platform, Río de La Plata Craton, Argentina: insights from the δ13C chemostratigraphy. Sed Geol 353:139–157. https://doi.org/10.1016/j.sedgeo.2017.03.007

    Article  Google Scholar 

  • Gómez-Peral LE, Kaufman AJ, Arrouy MJ, Richiano S, Sial AN, Poiré DG, Ferreira VP (2018) Preglacial palaeoenvironmental evolution of the Ediacaran Loma Negra Formation far south-western Gondwana, Argentina. Precambr Res 315:120–137. https://doi.org/10.1016/j.precamres.2018.07.005

    Article  Google Scholar 

  • Gómez-Peral LE, Arrouy MJ, Poiré DG, Cavarozzi CE (2019) Redox-sensitive element distribution in the Neoproterozoic Loma Negra Formation in Argentina, in the Clymene Ocean context. Precambr Res 332:105–384. https://doi.org/10.1016/j.precamres.2019.105384

    Article  Google Scholar 

  • Gómez-Peral LE, Arrouy MJ, Richiano S, Cereceda A, Alé SA, Poiré DG (2021) Unravelling hidden glacial effects in the Cryogenian marine depositional settings of the Tandilia Basin, Argentina. Precambr Res 361:106261. https://doi.org/10.1016/j.precamres.2021.106261

    Article  Google Scholar 

  • Grey K, Hill AC, Calver C (2011) Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in a global context. In: Arnoud E, Halverson GP, Shields-Zhou G (eds) The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs 36(1):113–134

  • Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochim Cosmochim Acta 68:1265–1279. https://doi.org/10.1016/j.gca.2003.09.012

    Article  Google Scholar 

  • Halverson GP, Maloof AC, Schrag DP, Dudas FO, Hurtgen MT (2007) Stratigraphy and geochemistry of a ca. 800 Ma negative carbon isotope interval in northeastern Svalbard. Chem Geol 237:5–27

    Article  Google Scholar 

  • Halverson GP, Wade BP, Hurtgen MT, Barovich KM (2010) Neoproterozoic chemostratigraphy. Precambr Res 182:337–350

    Article  Google Scholar 

  • Hartnady CJ, Joubert P, Stowe C (1985) Proterozoic crustal evolution in southwestern Africa. Episodes 8:236–244

    Article  Google Scholar 

  • Hoffman PF, Halverson GP, Domacke EW et al (2012) Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. Precambr Res 206–207:137–158

    Article  Google Scholar 

  • Huang J, Chu X, Jiang G, Feng L, Chang H (2011) Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. J Geol Soc Lond 168:805–815. https://doi.org/10.1144/0016-76492010-132

    Article  Google Scholar 

  • Hueck M, Oyhantçabal P, Philipp RP, Basei MAS, Siegesmund S (2018) The Dom Feliciano Belt in Southern Brazil and Uruguay. In: Siegesmund S, Basei MAS, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana. Regional Geology Reviews, Cham, pp 267–302

    Chapter  Google Scholar 

  • Iñiguez Rodríguez AM (1999) La Cobertura Sedimentaria de Tandilia. In: Caminos R (ed) Geología Argentina. SEGEMAR, pp 101–106

    Google Scholar 

  • Johansson A (2014) From Rodinia to Gondwana with the ‘SAMBA’ model—a distant view from Baltica towards Amazonia and beyond. Precambr Res 244:226–235

    Article  Google Scholar 

  • Klimchouk AB (2012) Speleogenesis, hypogenic. In: Culver DC, White BW (eds) Encyclopedia of Caves, 2nd edn. Elsevier, Chennai, pp 748–765

    Chapter  Google Scholar 

  • Klimchouk A, Palmer A, De Waele J, Auler A, Audra P (eds) (2017). Springer International Publishing

    Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr Res 160:179–210

    Article  Google Scholar 

  • Machel HG (1999) Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers. Hydrogeol J 7:94–107

    Article  Google Scholar 

  • Martínez JC, Dristas JA, van den Kerkhof AM et al (2013) Late-Neoproterozoic hydrothermal fluid activity in the Tandilia belt. Argentina. Rev Asoc Geol Argent 70:410–426

    Google Scholar 

  • Mazumdar A, Banerjee DM, Schidlowski M, Balaram V (1999) Rare-earth elements and Stable Isotope Geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (lesser Himalaya, India). Chem Geol 156:275–279

    Article  Google Scholar 

  • Mazzullo SJ, Harris PM (1992) Mesogenetic dissolution: its role in porosity development in carbonate reservoirs. AAPG (am Assoc Pet Geol) Bull 76:607–620

    Google Scholar 

  • Mcdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnson DT, Schrag DP (2010) Calibrating the Cryogenian. Science 327:1241–1243

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and Mineralogy of Rare Earth Elements. Min. Soc. Am. Rev. Mineral 21: 169–200

  • McRoberts C, Furrer H, Jones D (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemical data: Palaeogeography. Palaeoclimatology, Palaeoecology 136:79–95

    Article  Google Scholar 

  • Merdith AS, Collins AS, Williams SE et al (2017) A full-plate global reconstruction of the Neoproterozoic. Gondwana Res 50:84–134

    Article  Google Scholar 

  • Meyer EE, Quicksall AN, Landis JD, Link PK, Bostick BC (2012) Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: evidence for ocean redox conditions before and during carbonate deposition. Precambr Res 192–195:89–106. https://doi.org/10.1016/j.precamres.2011.09.015

    Article  Google Scholar 

  • Meyers WJ, Lohmann KC (1985) Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico in Schneiderman N, Harris PM (eds) Carbonate Cements: SEPM, Special Publication 36: 223–239

  • Moore D, Reynolds R Jr (1999) X-ray diffraction and the identification and analysis of clay minerals. Oxford, New York, p 332

    Google Scholar 

  • Mountjoy EW, Amthor JE (1994) Has burial dolomitization come of age? Some answers from the Western Canada Sedimentary Basin. Spec Publ Int Assoc Sedimentolog 21:203–229

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer AN (2012) Passage growth and development. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 440–444

    Google Scholar 

  • Pankhurst RJ, Ramos A, Linares E (2003) Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. J S Am Earth Sci 16:5–13

    Article  Google Scholar 

  • Pittet B, Suan G, Lenoir F, Duarte LV, Mattioli E (2014) Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the Oceanic Anoxic Event. Sediment Geol. https://doi.org/10.1016/j.sedgeo.2014.01.00

    Article  Google Scholar 

  • Poiré DG (1989) Stromatolites of the Sierras Bayas Group, Upper Proterozoic of Olavarría, Sierras Septentrionales, Argentina. Stromatolite Newsl 11:58–61

    Google Scholar 

  • Poiré DG (1993) Estratigrafía del Precámbrico sedimentario de Olavarría, Sierras Bayas, Provincia de Buenos Aires, Argentina. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos Actas II, 1–11

  • Poiré DG, Gaucher C (2009). Lithostratigraphy. Neoproterozoic Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C et al (eds) Neoproterozoic–Cambrian tectonics, global change and evolution: a focus on Southwestern Gondwana. Dev Precambr Geol 16: 87–101

  • Poiré DG, Gómez-Peral LE, Arrouy MJ (2018) Glaciations in South America. In: Siegesmund S, Basei MAS, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana. Special Publication of Springer Nature, pp 527–541. https://doi.org/10.1007/978-3-319-68920-3_19

    Chapter  Google Scholar 

  • Railsback LB, Holland SM, Hunter DM et al (2003) Controls on geochemical expression of subaerial exposure in Ordovician limestones from the Nashville Dome, Tennessee, U.S.A. J Sediment Res 73:790–805

    Article  Google Scholar 

  • Rapalini AE, Trindade RI, Poiré DG (2013) The La Tinta pole revisited: Paleomagnetism of the Neoproterozoic Sierras Bayas Group (Argentina) and its implications for Gondwana and Rodinia. Precambr Res 224:51–70

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc 160:613–628

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Fanning CM et al (2007) The Río de la Plata Craton and the assembly of SW Gondwana. Earth-Sci Rev 83:49–82

    Article  Google Scholar 

  • Rapela CW, Fanning CM, Casquet C et al (2011) The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690

    Article  Google Scholar 

  • Semikhatov MA (1975) Experiences in stromatolite studies in the USSR. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 337–357

    Google Scholar 

  • Semikhatov MA (1991) General problems of Proterozoic stratigraphy in the URSS. Soviet Sci Rev Geol Sect 1:1–192

    Google Scholar 

  • Shields GA, Strachan RA, Porter SM, Halverson GP, Macdonald FA et al (2021) A template for an improved rock-based subdivision of the pre-Cryogenian timescale. J Geol Soc. https://doi.org/10.1144/jgs2020-222

    Article  Google Scholar 

  • Skotnicki SJ, Knauth LP (2007) The middle proterozoic mescal paleokarst, Central Arizona, USA: Karst development, silicification and cave deposits. J Sediment Res 77:1046–1062

    Article  Google Scholar 

  • Skotnicki SJ, Hill AC, Walter M, Jenkins R (2008) Stratigraphic relationships of Cryogenian strata disconformably overlying the Bitter Springs Formation, northeastern Amadeus Basin, Central Australia. Precambr Res 165:243–259

    Article  Google Scholar 

  • Soyol-Erdene TO, Huh Y (2013) Rare earth element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323). Chem Geol 358:78–89. https://doi.org/10.1016/j.chemgeo.2013.08.047

  • Thelling BP, Railsback LLB, HollandCrowe SMDE (2007) Heterogeneity in geochemical expression of subaerial exposure limestones, and its implications for sampling to detect exposure surfaces. J Sediment Res 77:159–169

    Article  Google Scholar 

  • Tohver E, Cawood PA, Rosello EA, Jourdan F (2011) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Río de la Plata craton, Argentina. Gondwana Res 21(2–3):394–405. https://doi.org/10.1016/j.gr.2011.04.001

    Article  Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarckson MO, Wood RA (2016) Effective use of cerium as redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162

    Article  Google Scholar 

  • Tucker ME, Bathurst RGC (1990) Carbonate Diagenesis. Reprint series, volume 1. International Association of Sedimentologists. Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston, Paris

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, London, p 482

    Book  Google Scholar 

  • Vail PR (1992) The evolution of seismic stratigraphy and the global sea level curve. In: Dott RHJR (ed),Eustasy: The Historical Ups and Downs of a Major Geological Concept: Geological Society of America, Memoir 180: 83–91

  • Weaver CE (1989) Clays, muds, and shales. Developments in sedimentology 44. Elsevier, Amsterdam

    Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Article  Google Scholar 

  • Wright VP (1982) The recognition and interpretation of paleokarsts: two examples from the Lower Carboniferous of South Wales. J Sediment Petrol 51:83–94

    Google Scholar 

  • Zelazny LW, White GN (1989) The pyrophyllite-talc group. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America Book Series. EEUU, Madison, pp 527–550

    Google Scholar 

  • Zhou Y, Pogge von Strandmann PAE, Zhu M, Ling H, Manning C, He T, Shields GA (2020) Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology 48:462–467. https://doi.org/10.1130/G46756.1

    Article  Google Scholar 

  • Zimmermann U, Poiré DG, Gómez-Peral LE (2011) Neoproterozoic to Lower Palaezoic successions of Tandilia System in Argentina: Implication for the palaeotectonic framework of southwest Gondwana. Int J Earth Sci 100:489–510

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to J. Canallichio for field assistance in quarries (Cementos Avellaneda SA). Special thanks to G. Kürten and L. Vigiani for the XRD analysis, D. Mártire and P. García for the preparation of thin sections, C. Cavarozzi for the ICP-MS analysis and to A. Kang and A. Azpeitia for the SEM-EDS preparation and analysis. A.J. Kaufman is thanked for providing field photographs. Field work and laboratory materials were supported by grants to LEGP (PICT Pres. BID 2018-4022, Fundación Williams and PID-UNLP 888). We would like to extend our sincere thanks to the reviewer Prof. U. Zimmermann for his dedicated and comprehensive evaluation of the original manuscript, which significantly improved the present version. Thanks should also go to N. Noffke (Topic Editor), U. Riller (Editor-in-Chief) and an anonymous reviewer for their detailed evaluation of the manuscript and for considering it relevant for the IJES. M. Ponce is also thanked for the revision and proofreading in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía E. Gómez-Peral.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

531_2023_2308_MOESM1_ESM.eps

SI 1 X-Ray Diffractograms of samples from hypogene karst (a, b, c, d) and from the epigene karst (e, f) (see text for further explanations). AAA: Advanced argillic alteration; Q: quartz, D: dolomite, Ca: calcite; Py: Pyrophyllite, Ms: muscovite; Sm: smectite: Mn: Mn-oxides; Go: goethite

531_2023_2308_MOESM2_ESM.xlsx

SI 2 REY values normalised (*) to PAAS of samples of dolostones (TA, PA) and of the Mn-dyke (DM) Buenos Aires, Argentina

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Peral, L.E., Arrouy, M.J., Raigemborn, M.S. et al. Two karst events bounding drastic changes in the Neoproterozoic Tandilia Basin history, Argentina: paleogeographic relevance. Int J Earth Sci (Geol Rundsch) 112, 1503–1525 (2023). https://doi.org/10.1007/s00531-023-02308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02308-3

Keywords

Navigation