Skip to main content

Advertisement

Log in

Generation of Neogene adakitic-like magmas in the Argentine Puna-Eastern Cordillera transition: the Huachichocana Subvolcanic Complex

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Huachichocana Subvolcanic Complex (HSC) is one of the easternmost Miocene magmatic complexes from the Central Andes back-arc region. This complex comprises three major sheet-like igneous bodies and contiguous minor intrusions of andesitic to dacitic rocks distinguished by their adakite-like high Sr and Sr/Y values. Based on new detailed data of this system, we explore the genesis of intermediate magmas in the far back-arc region of the Central Andes and complement work on similar rocks from the Eastern Cordillera. We add petrography and mineral chemistry studies and we report new whole rock geochemical and Sr–Nd isotopic data, and a U–Pb zircon age for the HSC. The results suggest that these intrusive rocks were derived from melting of a hydrated mantle source and that the adakite-like composition was acquired through amphibole-dominated fractionation at deep to moderate crustal pressures and by the suppression of early plagioclase crystallization in precursor magmas. The presence of mafic microgranular enclaves is frequent and, along with variations in the composition of phenocrysts and common disequilibrium textures, suggests a significant role of mixing between mafic and intermediate magmas during their ascent and storage in the crust. U–Pb radiometric dating yielded a concordia age of 8.343 ± 0.042 Ma for the andesites of the HSC, coinciding with the period of maximum shortening of the eastern border of the Puna plateau. Nevertheless, this igneous complex is located at the southern margin of the Lípez fault system, a zone of lithospheric weakness that should favor magma emplacement so far east of the trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data is available in tables included in the manuscript or as supplementary material or the source is cited in the text.

References

  • Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68(12):2725–2744

    Article  Google Scholar 

  • Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, northwest Argentina. Tectonics 2:1–16

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the central andes. Annual Review Earth Planet Sci 25(1):139–174

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrock A, Giese P (2006) Seismological studies of the Central and Southern Andes. The Andes. Springer, Berlin, Heidelberg, pp 443–457

    Chapter  Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma. Colorado Am Min 87(8–9):1062–1076

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255(5050):1391–1397

    Article  Google Scholar 

  • Bello-González JP, Contreras-Reyes E, Arriagada C (2018) Predicted path for hotspot tracks off South America since Paleocene times: tectonic implications of ridge-trench collision along the Andean margin. Gondwana Res 64:216–234

    Article  Google Scholar 

  • Bergantz GW, Schleicher JM, Burgisser A (2015) Open-system dynamics and mixing in magma mushes. Nat Geosci 8(10):793–796

    Article  Google Scholar 

  • Bianchi M, Heit B, Jakovlev A, Yuan X, Kay SM, Sandvol E, Alonso RN, Coira B, Brown L, Kind R, Comte D (2013) Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. Tectonophysics 586:65–83

    Article  Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2017) Voluminous arc dacites as amphibole reaction-boundary liquids. Contrib Mineral Petrol 172(5):1–37

    Article  Google Scholar 

  • Browne BL, Eichelberger JC, Patino LC, Vogel TA, Dehn J, Uto K, Hoshizumi H (2006) Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan. J Petrol 47(2):301–328

    Article  Google Scholar 

  • Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O (2014) Fractional crystallization of high-K arc magmas: biotite-versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia. Contrib Mineral Petrol 168(5):1–28

    Article  Google Scholar 

  • Bühn B, Pimentel MM, Matteini M, Dantas EL (2009) High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Anais Acad Brasil Ci 81:99–114

    Article  Google Scholar 

  • Caffe PJ, Trumbull RB, Coira BL, Romer RL (2002) Petrogenesis of Early Neogene magmatism in the Northern Puna; implications for magma genesis and crustal processes in the Central Andean Plateau. J Petrol 43(5):907–942

    Article  Google Scholar 

  • Caffe PJ, Trumbull RB, Siebel W (2012) Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma. Lithos 134:179–200

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355(6331):eaag3055

    Article  Google Scholar 

  • Castro Dorado A, Bravo IMV, de la Rosa DJ (1990) Implicaciones de los enclaves máficos microgranulares en la petrogénesis de los granitoides calcoalcalinos hercínicos. Geogaceta 8:13–16

    Google Scholar 

  • Chappell BW (1996) Magma mixing and the production of compositional variation within granite suites: evidence from the granites of southeastern Australia. J Petrol 37(3):449–470

    Article  Google Scholar 

  • Chernicoff CJ, Richards JP, Zappettini EO (2002) Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence. Ore Geol Rev 21:127–155

    Article  Google Scholar 

  • Chiaradia M (2015) Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci Rep 5(1):1–5

    Article  Google Scholar 

  • Chiaradia M, Ulianov A, Kouzmanov K, Beate B (2012) Why large porphyry Cu deposits like high Sr/Y magmas? Sci Rep 2(1):1–7

    Article  Google Scholar 

  • Chmielowski J, Zandt G, Haberland C (1999) The central Andean Altiplano-Puna magma body. Geophys Res Lett 26(6):783–786

    Article  Google Scholar 

  • Coira BL, Cisterna CE (2021) Ordovician Volcanism in the Puna. Textures, structures and processes of volcanic successions. Springer, Cham, pp 129–147

    Chapter  Google Scholar 

  • Coira B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the Argentine Puna—A model for changing subduction geometry. Int Geol Rev 35(8):677–720

    Article  Google Scholar 

  • Collins WJ, Richards SR, Healy BE, Ellison PI (2000) Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers. Earth Environ Sci Trans R Soc Edinb 91(1–2):27–45

    Google Scholar 

  • Comte D, Carrizo D, Roecker S, Ortega-Culaciati F, Peyrat S (2016) Three-dimensional elastic wave speeds in the northern Chile subduction zone: variations in hydration in the supraslab mantle. Mon Not R Astron Soc 207(2):1080–1105

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119(1–4):125–144

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411(6841):1037–1039

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790

    Article  Google Scholar 

  • Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Article  Google Scholar 

  • De Silva SL (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17(12):1102–1106

    Article  Google Scholar 

  • De Silva SL, Kay SM (2018) Turning up the heat: high-flux magmatism in the Central Andes. Elements Int Mag Mineral Geochem Petrol 14(4):245–250

    Google Scholar 

  • De Silva S, Zandt G, Trumbull R, Viramonte JG, Salas G, Jiménez N (2006) Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective. Geol Soc Spec Publ 269(1):47–63

    Article  Google Scholar 

  • Deeken A, Sobel ER, Coutand I, Haschke M, Riller U, Strecker MR (2006) Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: from early Cretaceous extension to middle Miocene shortening. Tectonics. https://doi.org/10.1029/2005TC001894

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665

    Article  Google Scholar 

  • Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi. Indonesia Contrib Mineral Petrol 167(6):1–23

    Google Scholar 

  • Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys J Int 186:45–58

    Article  Google Scholar 

  • Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98(1–4):118–140

    Article  Google Scholar 

  • Gioia SMCL, Pimentel MM (2000) The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais Acad Brasil Ci 72:219–245

    Article  Google Scholar 

  • Gioncada AN, Vezzoli L, Mazzuoli R, Omarini R, Nonnotte P, Guillou H (2010) Pliocene intraplate-type volcanism in the Andean foreland at 26° 10′ S, 64° 40′ W (NW Argentina): Implications for magmatic and structural evolution of the Central Andes. Lithosphere 2(3):153–171

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533

    Article  Google Scholar 

  • Guo Z, Wilson M, Liu J (2007) Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96(1–2):205–224

    Article  Google Scholar 

  • Haschke M, Siebel W, Günther A, Scheuber E (2002) Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21–26 S). J Geophys Res Solid Earth 107(B1):ECV-6

    Article  Google Scholar 

  • Hasegawa A (2018) Seismic imaging of mantle wedge corner flow and arc magmatism. Proc Jpn Acad, Series B 94(5):217–234

    Article  Google Scholar 

  • Heidorn R, Neubauer F, Paar W (2002) Structural development of a mineralized caldera and associated volcanism from the Rachaite volcanic complex, Northern Puna, NW Argentina. PANGEO Conference, Salzburg

  • Higgins O, Sheldrake T, Caricchi L (2022) Machine learning thermobarometry and chemometry using amphibole and clinopyroxene: a window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts). Contrib Mineral Petrol 177(1):1–22

    Article  Google Scholar 

  • Holness MB, Stock MJ, Geist D (2019) Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos Trans Royal Soc A 377(2139):20180006

    Article  Google Scholar 

  • Hongn FD, Becchio RA (1999) Las fajas miloníticas de Brealito, Valles Calchaquíes, Salta. Rev Asoc Geol Argent 54(1):74–87

    Google Scholar 

  • Huang F, He Y (2010) Partial melting of the dry mafic continental crust: implications for petrogenesis of C-type adakites. Chin Sci Bull 55(22):2428–2439

    Article  Google Scholar 

  • Humphreys MC, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch Volcano: insights from phenocryst zoning. J Petrol 47(12):2303–2334

    Article  Google Scholar 

  • Ibarra F, Liu S, Meeßen C, Prezzi CB, Bott J, Scheck-Wenderoth M, Sobolev S, Strecker MR (2019) 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: insights from gravity and geodynamic modelling. Tectonophysics 766:453–468

    Article  Google Scholar 

  • Ibarra F, Prezzi CB, Bott J, Scheck-Wenderoth M, Strecker MR (2021) Distribution of temperature and strength in the Central Andean lithosphere and its relationship to seismicity and active deformation. J Geophys Res Solid Earth 126(5):e2020JB021231

    Article  Google Scholar 

  • Jellinek AM, Kerr RC (1999) Mixing and compositional stratification produced by natural convection: 2. Applications to the differentiation of basaltic and silicic magma chambers and komatiite lava flows. J Geophys Res Solid Earth 104(B4):7203–7218

    Article  Google Scholar 

  • Jofré CB, Caffe PJ, Trumbull RB, Maro G, Schmitt AK, Sarchi C, Flores P, Peralta Arnold YJ, Franco MG, Lucassen F (2021) Petrogenesis of peraluminous magmas in the Central Andean backarc: the Huayra Huasi Volcanic Complex. NW Argentina Int J Earth Sci 110(8):2725–2754

    Article  Google Scholar 

  • Jordán TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361

    Article  Google Scholar 

  • Kawamoto T (1992) Dusty and honeycomb plagioclase: indicators of processes in the Uchino stratified magma chamber, Izu Peninsula Japan. J Volcanol Geotherm Res 49(3–4):191–208

    Article  Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas shallow subduction, plateau uplift, and ridge and terrane collision, vol 204. Geological Society of America Memoir, Texas, pp 229–259

    Chapter  Google Scholar 

  • Kay RW, Kay SM (2002) Andean adakites: three ways to make them. Acta Petrol Sin 18(3):303–311

    Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994a) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J Geophys Res 99:24323–24339

    Article  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994b) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J Geophys Res Solid Earth 99(B12):24323–24339

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33° S Latitude). In: Skinner BJ (ed) Geology and ore deposits of the central Andes, vol 7. Society of Economic Geologists, Littleton. https://doi.org/10.5382/SP.07

    Chapter  Google Scholar 

  • Kay SM, Coira BL, Caffe PJ, Chen CH (2010) Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. J Volcanol Geotherm Res 198(1–2):81–111

    Article  Google Scholar 

  • Košler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB (2002) U-Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem Geol 182(2–4):605–618

    Article  Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339

    Article  Google Scholar 

  • Laumonier M, Gaillard F, Muir D, Blundy J, Unsworth M (2017) Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet Sci Lett 457:173–180

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CE, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61(405):295–310

    Article  Google Scholar 

  • Li NB, Niu HC, Yang WB, Lai CK, Zhao ZH (2019) Orogenic root delamination induced by eclogitization of thickened lower crust in the Chinese Western Tianshan: constraints from adakites. J Geophys Res Solid Earth 124(11):11089–11104

    Article  Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke H, Romer R, Dulski P (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27° S. Tectonophysics 341(1–4):195–223

    Article  Google Scholar 

  • Machado N, Gauthier G (1996) Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim Cosmochim Acta 60(24):5063–5073

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high-pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593

    Article  Google Scholar 

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182

    Article  Google Scholar 

  • Maro G, Caffe PJ (2017) Neogene monogenetic volcanism from the Northern Puna region: products and eruptive styles. Geol Soc London Spec Publ 446(1):337–359

    Article  Google Scholar 

  • Maro G, Caffe PJ, Romer RL, Trumbull RB (2017) Neogene mafic magmatism in the northern Puna Plateau, Argentina: generation and evolution of a back-arc volcanic suite. J Petrol 58(8):1591–1617

    Article  Google Scholar 

  • Maro G, Trumbull RB, Caffe PJ, Jofré CB, Filipovich RE, Frick DA (2020) The composition of amphibole phenocrysts in Neogene mafic volcanic rocks from the Puna plateau: Insights on the evolution of hydrous back-arc magmas. Lithos 376:105738

    Article  Google Scholar 

  • Marquillas RA, Del Papa C, Sabino IF (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous–Paleogene), northwestern Argentina. Int J Earth Sci 94(1):94–113

    Article  Google Scholar 

  • Marsh BD (1989) Magma chambers. Annu Rev Earth Planet Sci 17:439–474

    Article  Google Scholar 

  • Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002) Geodynamical evolution of Central Andes at 24° S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt. J Volcanol Geotherm Res 118(1–2):205–228

    Article  Google Scholar 

  • Mattioli M, Renzulli A, Menna M, Holm PM (2006) Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): evidence from a nearly aphyric high-K andesite with skeletal olivines. J Volcanol Geotherm Res 158(1–2):87–105

    Article  Google Scholar 

  • Mazzuoli R, Vezzoli L, Omarini R, Acocella V, Gioncada A, Matteini M, Dini A, Guillou H, Hauser N, Uttini A, Scaillet S (2008) Miocene magmatism and tectonics of the easternmost sector of the Calama–Olacapato–El Toro fault system in Central Andes at~ 24° S: insights into the evolution of the Eastern Cordillera. Geol Soc Am Bull 120(11–12):1493–1517

    Article  Google Scholar 

  • Molina JF, Moreno JA, Castro A, Rodríguez C, Fershtater GB (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232:286–305

    Article  Google Scholar 

  • Montero López C, Hongn F, Steinmetz RLL, Aramayo A, Pingel H, Strecker MR, Cottle JM, Bianchi C (2021) Development of an incipient Paleogene topography between the present-day Eastern Andean Plateau (Puna) and the Eastern Cordillera, southern Central Andes, NW Argentina. Basin Res 33(2):1194–1217

    Article  Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130(3):304–319

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature.” Lithos 112(3–4):556–574

    Article  Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1993) A digital age map of the ocean floor. Scripps Inst Oceanogr Reference Series 93(30):1–15

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Min 77(11–12):1242–1249

    Google Scholar 

  • Norini G, Baez W, Becchio R, Viramonte J, Giordano G, Arnosio M, Pinton A, Groppelli G (2013) The Calama–Olacapato–El Toro fault system in the Puna Plateau, Central Andes: geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280–1297

    Article  Google Scholar 

  • O’Neill HSC (2016) The smoothness and shapes of chondrite-normalized rare earth element patterns in basalts. J Petrol 57(8):1463–1508

    Article  Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81

    Article  Google Scholar 

  • Petrinovic IA, Riller U, Brod JA, Alvarado G, Arnosio M (2006) Bimodal volcanism in a tectonic transfer zone: evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. J Volcanol Geotherm Res 152(3–4):240–252

    Article  Google Scholar 

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558

    Article  Google Scholar 

  • Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66(12):2193–2209

    Article  Google Scholar 

  • Pingel H, Strecker MR, Mulch A, Alonso RN, Cottle J, Rohrmann A (2020) Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth Planet Sci Lett 535:116112

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Min 101(4):841–858

    Article  Google Scholar 

  • Ramos VA (1972) El Ordovícico fosilífero de la sierra de Lina, departamento Susques, provincia de Jujuy, República Argentina. Rev Asoc Geol Argent 2:84–94

    Google Scholar 

  • Ramos VA (2010) The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geol J 45:2–25

    Article  Google Scholar 

  • Ramos VA, Turic MA, Zuzek AB (1967) Geología de las quebradas de Huichaira-Pecoya, Purmamarca y Tumbaya Grande en la margen derecha de la quebrada de Humahuaca. Rev Asoc Geol Argent 22(3):209–221

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51(1–4):1–25

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Econ Geol 106(7):1075–1081

    Article  Google Scholar 

  • Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J Volcanol Geotherm Res 105(1–2):77–105

    Article  Google Scholar 

  • Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet Sci Lett 188(3–4):299–311

    Article  Google Scholar 

  • Risse A, Trumbull RB, Kay SM, Coira B, Romer RL (2013) Multi-stage evolution of late Neogene mantle-derived magmas from the central Andes back-arc in the Southern Puna Plateau of Argentina. J Petrol 54(10):1963–1995

    Article  Google Scholar 

  • Rodríguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36°2’S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48(11):2033–2061

    Article  Google Scholar 

  • Rollinson HR, Pease V (2021) Using geochemical data: to understand geological processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JA (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34

    Article  Google Scholar 

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J Volcanol Geotherm Res 165(3–4):142–162

    Article  Google Scholar 

  • Ruprecht P, Simon AC, Fiege A (2020) The survival of mafic magmatic enclaves and the timing of magma recharge. Geophys Res Lett 47(14):e2020GL087186

    Article  Google Scholar 

  • Rutherford MJ, Devine III JD (2008) Magmatic conditions and processes in the storage zone of the 2004–2006 Mount St. Helens dacite: Chapter 31 in a volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. Tech. rep., US Geological Survey

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J Petrol 44(8):1433–1453

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res Solid Earth 98(11):19667–19685

    Article  Google Scholar 

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jiménez NC, Ort MH (2011) 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123(5–6):821–840

    Article  Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T–f O2–f H2O conditions of the dacite magma. J Petrol 40(3):381–411

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Article  Google Scholar 

  • Smith DJ (2014) Clinopyroxene precursors to amphibole sponge in arc crust. Nat Comm 5(1):1–6

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29(1–4):99–124

    Article  Google Scholar 

  • Sparks RSJ, Folkes CB, Humphreys MC, Barfod DN, Clavero J, Sunagua MC, McNutt SR, Pritchard ME (2008) Uturuncu volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion. Am J Sci 308(6):727–769

    Article  Google Scholar 

  • Springer W, Seck HA (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib Mineral Petrol 127(1):30–45

    Article  Google Scholar 

  • Stacey JT, Kramers L (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  • Stimac JA, Pearce TH (1992) Textural evidence of mafic-felsic magma interaction in dacite lavas, Clear Lake. California Am Min 77(7–8):795–809

    Google Scholar 

  • Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69(1):595–662

    Article  Google Scholar 

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Mineral Petrol 163(5):807–823

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Pub 42(1):313–345

    Article  Google Scholar 

  • Taussi M, Godoy B, Piscaglia F, Morata D, Agostini S, Le Roux P, González-Maurel O, Gallmeyer G, Menziez A, Renzulli A (2019) The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. J Volcanol Geotherm Res 373:179–198

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Min Geochem 67(1):417–452

    Article  Google Scholar 

  • Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999) Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26 S) and its geodynamic implications. J S Am Earth Sci 12(2):135–155

    Article  Google Scholar 

  • Turner JCM (1958) Estratigrafía del cordón de Escaya y de la sierra de Rinconada (Jujuy). Rev Asoc Geol Argent 13(1–2):15–41

    Google Scholar 

  • Turner JCM (1960) Estratigrafía de la Sierra de Santa Victoria y adyacencias. Academia Nacional de Ciencias de Córdoba. Boletín 41(2):165-196

  • Ulberich JPV, Galli CI, Franzese JR (2021) Sedimentary evolution of Tres Cruces basin: Constraints on the development of the Cenozoic foreland in Central Andes, NW Argentina. J S Am Earth Sci 112:103594

    Article  Google Scholar 

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J J Geophys Res Solid Earth. https://doi.org/10.1029/2010JB007922

    Article  Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309(5967):438–439

    Article  Google Scholar 

  • Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116(1–2):77–91

    Article  Google Scholar 

  • Viramonte JG, Galliski MA, Saavedra VA, Aparicio A, García-Cacho GL, Escorza CM (1984) El finivulcanismo básico de la depresión de Arizaro, provincia de Salta. In: IX Congreso Geológico Argentino, Actas III: 234–254

  • Viramonte JG, Petrinovic IA, Galliski MA, Yague AA (1994) Manifestaciones volcanicas Cenozoicas de Antilla-San Lorenzo, Salta, Argentina (borde oriental de los Andes centrales del Sur). In: VII Congreso Geologico Chileno, Conception pp. 1468–1472

  • Viramonte JM, Suzaño N, Prescott C, Becchio R, Germán J, Viramonte MA, Pimentel MM (2008) Cenozoic high-strontium andesites in the Eastern Cordillera of Northwestern Argentina, Central Andes. International Simposium on Andean Geodinamics, France

  • Wang J, Wang Q, Dan W, Yang JH, Yang ZY, Sun P, Qi Y, Hu WL (2019) The role of clinopyroxene in amphibole fractionation of arc magmas: evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet. Lithos 338:174–188

    Article  Google Scholar 

  • Weinberg RF, Becchio R, Farias P, Suzaño N, Sola A (2018) Early Paleozoic accretionary orogenies in NW Argentina: growth of West Gondwana. Earth-Sci Rev 187:219–247

    Article  Google Scholar 

  • Winslow H, Ruprecht P, Gonnermann H, Phelps P, Muñoz-Saez C, Delgado F, Pritchard M, Amigo A (2022) Insights for crystal mush storage utilizing mafic enclaves from the 2011–12 Cordón Caulle eruption. Researchsquare. https://doi.org/10.21203/rs.3.rs-1366483/v1

    Article  Google Scholar 

  • Wörner G, Mamaní M, Blum-Oeste M (2018) Magmatism in the central Andes. Elements 14(4):237–244

    Article  Google Scholar 

  • Yáñez GA, Ranero CR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32–34 S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J Geophys Res Solid Earth 106(B4):6325–6345

    Article  Google Scholar 

  • Zandt G, Leidig M, Chmielowski J, Baumont D, Yuan X (2003) Seismic detection and characterization of the Altiplano-Puna magma body, central Andes. Pure Appl Geophys 160(3–4):789–807

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pedro Zambrana, Norberto Tejerina and Patrocinio Flores (IdGyM-UNJu) for preparation of thin-sections and chemical analyses and Edgar González and Dr Cynthia B. Jofré for their help in field trips. We are also grateful with Dr Fernando Colombo, Dr Alina Guereschi and Dr Manuel Demartis (LAMARX-UNC) for their assistance during the execution of microprobe analyses. Dr Viramonte also wants to thank the University of Brasilia and, especially to Dr Marcio Pimentel (radiogenic analyses and geochronology). We also appreciate the sponsorship of University of Jujuy (Grant E/B008 to G. Maro), ANPCyT (Grants PICT 2016-044 to G. Maro and PICT 2018-01350 to J. Viramonte) and Consejo Nacional de Investigaciones Científicas y Técnicas (PUE 2018-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Maro.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Supplementary file2 (XLSX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maro, G., Suzaño, N.O., Ulberich, J.P.V. et al. Generation of Neogene adakitic-like magmas in the Argentine Puna-Eastern Cordillera transition: the Huachichocana Subvolcanic Complex. Int J Earth Sci (Geol Rundsch) 112, 1435–1459 (2023). https://doi.org/10.1007/s00531-023-02306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02306-5

Keywords

Navigation