Skip to main content

Advertisement

Log in

Discovery of Neoproterozoic adakitic rocks in the Eastern Tianshan (NW China) of the southern Altaids

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Paleo-Asian Ocean, as the processor of the Altaids, was a long-lived ocean, and its subduction gave rise to substantial continental growth in the Central Asian continent. However, the location of the major oceanic basin and its evolution history are debatable, impeding our better comprehension of the early accretionary tectonics of the Paleo-Asian Ocean and its link to the reconstruction of the Rodinia. Here, we report our newly discovered Neoproterozoic adakitic rock (Xingxingxia gneissic granite) in the Eastern Tianshan of the southern Altaids to address the above issues. The Xingxingxia gneissic granite displays high Sr/Y ratios (47–114) and strongly fractionated rare earth element (REE) patterns with low concentrations of Y (3.00–6.36 ppm) and Yb (0.23–0.62 ppm), indicative of the adakite affinity. The adakitic rock is depleted in Nb, Ta, P and Ti, and possesses low Mg# (37–42), comparatively high K2O/Na2O ratios (0.75–1.08). Zircon U–Pb dating reveal that the adakitic rock was formed at 869 ± 9 Ma, which has relatively depleted Hf isotopic compositions (εHf(t) =  + 1.9 to + 4.7). Their geochemical features are consistent with those of an origin from a thickened lower arc crust. Our work suggests that subduction of the Paleo-Asian oceanic slab beneath the Central Tianshan Arc occurred at least in the Neoproterozoic. Therefore, our study provides a solid and key evidence to show that the tectonic position of the major Paleo-Asian Ocean was located in the South Tianshan, where the paleo-ocean evolved into its mature stage following the subduction beneath the Central Tianshan at ca. 870 Ma. This work also shed light on the reconstruction of Rodinia and the interaction of the Paleo-Asian Ocean and the Jiangnan–North Tarim Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury RC, Cotten J, Bourgois J, Michaud F (2001) Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific rise subduction below southern Baja California? Geology 29(6):531–534

    Article  Google Scholar 

  • Ao S, Mao Q, Windley BF, Song D, Zhang Z, Je Z, Wan B, Han C, Xiao W (2021) The youngest matrix of 234 Ma of the Kanguer accretionary mélange containing blocks of N-MORB basalts: constraints on the northward subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. Int J Earth Sci 110(3):791–808

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362(6416):144–146

    Article  Google Scholar 

  • Berzin NA, Dobretsov NL (1994) Geodynamic evolution of southern Siberia in late Precambrian-early Paleozoic time. Reconstruction of the Paleo-Asian Ocean: 45–62

  • Bourgois J, Michaud F (2002) Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12–10 Myr. Earth Planet Sci Lett 201(1):35–44

    Article  Google Scholar 

  • Calmus T, Aguillón-Robles A, Maury R, Bellon H, Benoit M, Cotten J, Bourgois J, Michaud F (2003) Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts. Lithos 66(1–2):77–105

    Article  Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134(1):33–51

    Article  Google Scholar 

  • Cawood PA, Wang Y, Xu Y, Zhao G (2013) Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 41(8):903–906

    Article  Google Scholar 

  • Cawood PA, Zhao G, Yao J, Wang W, Xu Y, Wang Y (2018) Reconstructing South China in phanerozoic and precambrian supercontinents. Earth Sci Rev 186:173–194

    Article  Google Scholar 

  • Charvet J, Shu L, Laurent-Charvet S, Wang B, Faure M, Cluzel D, Chen Y, De Jong K (2011) Palaeozoic tectonic evolution of the Tianshan belt. NW China Sci China Earth Sci 54(2):166–184

    Article  Google Scholar 

  • Chen Y (2006) Geological characteristics and ore genesis of the Xiaobaishitou tungsten (–molybdenum) deposit, Xinjiang. Gansu Metall 28:75–81 ((in Chinese with English abstract))

    Google Scholar 

  • Chen G, Pei X, RuiBao L, ZuoChen L, PeiI L, Liu Z, Chen Y, Liu C (2013) Late Triassic magma mixing in the East Kunlun orogenic belt: A case study of Helegang Xilikete granodiorites. Geol China 40(4):1044–1065

    Google Scholar 

  • Chen Z, Xiao W, Windley BF, Schulmann K, Mao Q, Zhang Z, Zhang J, Deng C, Song S (2019) Composition, provenance, and tectonic setting of the southern Kangurtag accretionary complex in the Eastern Tianshan, NW China: Implications for the late Paleozoic evolution of the North Tianshan Ocean. Tectonics 38(8):2779–2802

    Article  Google Scholar 

  • Choudhary BR, Ernst RE, Xu Y, Evans DA, de Kock MO, Meert JG, Ruiz AS, Lima GA (2019) Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambr Res 332:105382

    Article  Google Scholar 

  • Coney PJ (1992) The Lachlan belt of eastern Australia and circum-Pacific tectonic evolution. Tectonophysics 214(1–4):1–25

    Article  Google Scholar 

  • Defant M (2002) Adakites: some variations on a theme. Acta Petrologica Sinica 18:129–142

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665

    Article  Google Scholar 

  • Deng X, Chen Y, Santosh M, Wang J, Li C, Yue S, Zheng Z, Chen H, Tang H, Dong L (2017) U-Pb zircon, Re–Os molybdenite geochronology and Rb–Sr geochemistry from the Xiaobaishitou W (–Mo) deposit: implications for Triassic tectonic setting in eastern Tianshan, NW China. Ore Geol Rev 80:332–351

    Article  Google Scholar 

  • Dobretsov NL, Buslov MM, Vernikovsky VA (2003) Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Res 6(2):143–159

    Article  Google Scholar 

  • Evans DA (2013) Reconstructing pre-Pangean supercontinents. GSA. Bulletin 125(11–12):1735–1751

    Google Scholar 

  • Gao Z, Chen J, Lu S, Peng C, Qin Z (1993) Precambrian system of the Northern Xinjiang. Geol Publ House, Beijing: 1–153 (in Chinese with English abstract)

  • Ge R, Zhu W, Wilde SA, He J, Cui X, Wang X, Bihai Z (2014) Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 33(3):302–329

    Article  Google Scholar 

  • Gordienko I, Bulgatov A, Lastochkin N, Sitnikova V (2009) Composition and U-Pb isotopic age determinations (SHRIMP II) of the ophiolitic assemblage from the Shaman paleospreading zone and the conditions of its formation (North Transbaikalia). In: Doklady Earth Sciences, vol 429. Springer, pp 1420–1425

  • Gu L (2006) Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica 22(5):1103–1120 ((in Chinese with English abstract))

    Google Scholar 

  • Gu L, Hu S, Chu Q, Yu C, Xiao X (1999) Pre-collision granites and post-collision intrusive assemblage of the Kelameili-Harlik orogenic belt. Acta Geologica Sinica (english Edition) 73(3):316–329

    Article  Google Scholar 

  • Guivel C, Lagabrielle Y, Bourgois J, Maury R, Fourcade S, Martin H, Arnaud N (1999) New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao Ridge). Tectonophysics 311(1–4):83–111

    Article  Google Scholar 

  • Guo Z, Li M (1993) On the Early Paleozoic dispersed terranes in mid-Tianshan. Acta Scicentiarum Naturalum Universitis Pekinesis 29(3):356–362 ((in Chinese with English abstract))

    Google Scholar 

  • Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000) Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics 19(5):814–833

    Article  Google Scholar 

  • Guy A, Schulmann K, Soejono I, Xiao W (2020) Revision of the Chinese Altai‐east Junggar terrane accretion model based on geophysical and geological constraints. Tectonics 39(4): e2019TC006026.

  • Hastie AR, Cox S, Kerr AC (2021) Northeast-or southwest-dipping subduction in the Cretaceous Caribbean gateway? Lithos 386:105998

    Article  Google Scholar 

  • He Z, Zhang Z, Zong K, Dong X (2013) Paleoproterozoic crustal evolution of the Tarim Craton: constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. J Asian Earth Sci 78:54–70

    Article  Google Scholar 

  • He Z, Klemd R, Yan L, Lu T, Zhang Z (2018) Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon. Sci Rep-Uk 8(1):1–7

    Google Scholar 

  • He J, Xu B, Li D (2019) Newly discovered early Neoproterozoic (ca. 900 Ma) andesitic rocks in the northwestern Tarim Craton: Implications for the reconstruction of the Rodinia supercontinent. Precambr Res 325:55–68

    Article  Google Scholar 

  • Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sc 28(1):17–33

    Article  Google Scholar 

  • Hu A, Jahn B, Zhang G, Chen Y, Zhang Q (2000) Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328(1–2):15–51

  • Hu A, Wei G, Deng W, Chen L (2006) SHRIMP zircon U-Pb dating and its significance for gneisses from the southwest area to Qinghe County in the Altai. China Acta Petrologica Sinica 22(1):1–10 ((in Chinese with English abstract))

    Google Scholar 

  • Hu A, Wei G, Zhang J, Deng W, Chen L (2007) SHRIMP U-Pb age for zircons of East Tianhu granitic gneiss and tectonic evolution significance from the eastern Tianshan Mountains, Xinjiang. China Acta Petrologica Sinica 23(8):1795–1802

    Google Scholar 

  • Hu A, Wei G, Jahn B, Zhang J, Deng W, Chen L (2010) Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica et Cosmochimica Acta 39(3):197–212

  • Jahn B, Wu F, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23(2):82–92

    Article  Google Scholar 

  • Ji W, Wu F, Wang J, Liu X, Liu Z, Zhang Z, Cao W, Wang J, Zhang C (2020) Early evolution of Himalayan Orogenic Belt and generation of middle Eocene magmatism: Constraint from Haweng granodiorite porphyry in the Tethyan Himalaya. Front Earth Sci 8:236

    Article  Google Scholar 

  • Jiang W, Zhang J, Tian T, Wang X (2012) Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications. Phys Earth Planet Inter 212:76–87

    Article  Google Scholar 

  • Johnston ST, Thorkelson DJ (1997) Cocos-Nazca slab window beneath central America. Earth Planet Sci Lett 146(3–4):465–474

    Article  Google Scholar 

  • Kay RW, Kay SM (2002) Andean adakites: three ways to make them. Acta Petrologica Sinica 18(3):303–311

    Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J S Am Earth Sci 15(1):39–57

    Article  Google Scholar 

  • Kay SM, Ramos V, Marquez M (1993) Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol 101(6):703–714

    Article  Google Scholar 

  • Khain VE, Bozhko NA (1988) Historical Geotectonics: The Precambrian. Moscow Izdatel Nedra

  • Khain E, Bibikova E, Salnikova E, Kröner A, Gibsher A, Didenko A, Degtyarev K, Fedotova A (2003) The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: New geochronologic data and palaeotectonic reconstructions. Precambr Res 122(1–4):329–358

    Article  Google Scholar 

  • Kröner A, Hegner E, Lehmann B, Heinhorst J, Wingate M, Liu D, Ermelov P (2008) Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. J Asian Earth Sci 32(2–4):118–130

    Article  Google Scholar 

  • Kuzmichev A, Kröner A, Hegner E, Dunyi L, Yusheng W (2005) The Shishkhid ophiolite, northern Mongolia: a key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambr Res 138(1–2):125–150

    Article  Google Scholar 

  • Li J, Kusky TM (2007) World’s largest known Precambrian fossil black smoker chimneys and associated microbial vent communities, North China: Implications for early life. Gondwana Res 12(1–2):84–100

    Article  Google Scholar 

  • Li X, Zhang L, Wei C, Ai Y, Chen J (2007) Petrology of rodingite derived from eclogite in western Tianshan. China J Metamorphic Geol 25(3):363–382

    Article  Google Scholar 

  • Li Z, Bogdanova S, Collins A, Davidson A, De Waele B, Ernst R, Fitzsimons I, Fuck R, Gladkochub D, Jacobs J (2008a) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr Res 160(1–2):179–210

    Article  Google Scholar 

  • Li Z, Zhu X, Tang S, Li Y (2008b) Fe isotope fractionation between magnetite and pyrite during green schist-lower amphibolites facies metamorphism. Acta Petrologica Et Mineralogica 27(4):291–297

    Google Scholar 

  • Li D, He D, Santosh M, Ma D, Tang J (2015) Tectonic framework of the northern Junggar Basin part I: The eastern Luliang Uplift and its link with the East Junggar terrane. Gondwana Res 27(3):1089–1109

    Article  Google Scholar 

  • Liu X, Wang Q (1995) Geotectonics and its evolution of the Beishan orogenic belts in the northwestern China. Geosci Res 28:37–48

    Google Scholar 

  • Liu S, Guo Z, Zhang Z, Li Q, Zheng H (2004) Nature of the Precambrian metamorphic blocks in the eastern segment of Central Tianshan: Constraint from geochronology and Nd isotopic geochemistry. Sci China Ser D Earth Sci 47(12):1085–1094

    Article  Google Scholar 

  • Liu H, Zi J, Cawood PA, Cui X, Zhang L (2020) Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents. Precambr Res 337:105558

    Article  Google Scholar 

  • Long X, Wilde SA, Yuan C, Hu A, Sun M (2015) Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth. Precambr Res 260:76–90

    Article  Google Scholar 

  • Ma R, Shu L, Sun J (1997) Tectonic evolution and metallogeny of Eastern Tianshan Mountains. Beijing: Geological Publishing House 1:202 (in Chinese with English abstract)

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101(5):635–643

    Article  Google Scholar 

  • Mao Q, Xiao W, Fang T, Wang J, Han C, Sun M, Yuan C (2012) Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: implications for early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Res 22(2):534–553

    Article  Google Scholar 

  • Mao Q, Yu M, Xiao W, Windley BF, Li Y, Wei X, Zhu J, Lü X (2018) Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt. J Asian Earth Sci 153:365–378

    Article  Google Scholar 

  • Mao Q, Wang J, Xiao W, Windley BF, Schulmann K, Yu M, Fang T, Li Y (2019) Mineralization of an intra-oceanic arc in an accretionary orogen: Insights from the Early Silurian Honghai volcanogenic massive sulfide Cu-Zn deposit and associated adakites of the Eastern Tianshan (NW China). Geol Soc Am Bull 131(5–6):803–830

    Article  Google Scholar 

  • Mao Q, Ao S, Windley BF, Wang J, Li Y, Xiao W (2021a) Middle Triassic lower crust-derived adakitic magmatism: Thickening of the Dananhu intra-oceanic arc and its implications for arc–arc amalgamation in the Eastern Tianshan (NW China). Geol J 56(6):3137–3154

    Article  Google Scholar 

  • Mao Q, Ao S, Windley BF, Zhang Z, Song D, Je Z, Wan B, Tan W, Han C, Xiao W (2021b) Petrogenesis of Late Carboniferous-Early Permian mafic-ultramafic-felsic complexes in the eastern Central Tianshan, NW China: The result of subduction-related transtension? Gondwana Res 95:72–87

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46(3):411–429

    Article  Google Scholar 

  • Mossakovskii A, Ruzhentsev S, Samygin S, Kheraskova T (1993) Geotektonika, No. 6. In, vol., p 3

  • Muhtar M, Wu C, Santosh M, Lei R, Gu L, Wang S, Gan K (2020) Late Paleozoic tectonic transition from subduction to post-collisional extension in Eastern Tianshan, Central Asian Orogenic Belt. Geol Soc Am Bull 132(7–8):1756–1774

    Article  Google Scholar 

  • Muir R, Weaver S, Bradshaw J, Eby G, Evans J (1995) The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J Geol Soc 152(4):689–701

    Article  Google Scholar 

  • Nie F (2002) Geological features and origin of the Zhaobishan gold deposit in the Beishan region, northwest China. Chinese J Geol 37:207–218 ((in Chinese with English abstract))

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Lolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26:2508–2518

    Article  Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121(1–2):227–244

    Article  Google Scholar 

  • Peccerillo A, Taylor S (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81

    Article  Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith. Peru J Petrol 37(6):1491–1521

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine J, Oleksyn J, Westoby M, Walters M (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164(S3):S143–S164

    Article  Google Scholar 

  • Rogers G, Saunders A, Terrell D, Verma S, Marriner G (1985) Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California. Mexico Nat 315(6018):389–392

    Google Scholar 

  • Rytsk EY, Kovach V, Kovalenko V, Yarmolyuk V (2007) Structure and evolution of the continental crust in the Baikal Fold Region. Geotectonics 41(6):440–464

    Article  Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Phillippines. Geology 21(11):1007–1010

    Article  Google Scholar 

  • Şengör A, Natalin B, Burtman V (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364(6435):299–307

    Article  Google Scholar 

  • Sengör AC, Natal’In BA (1996) Turkic-type orogeny and its role in the making of the continental crust. Annu Rev Earth Planet Sci 24(1):263–337

    Article  Google Scholar 

  • Shu L, Yu J, Charvet J, Laurent-Charvet S, Sang H, Zhang R (2004) Geological, geochronological and geochemical features of granulites in the Eastern Tianshan, NW China. J Asian Earth Sci 24(1):25–41

    Article  Google Scholar 

  • Song S, Xiao W, Windley B F, Collins A S, Chen Y, Zhang J, Schulmann K, Han C, Wan B, Ao S, Zhnag Z, Song D, Li R (2020) Late Paleozoic Chingiz and Saur Arc amalgamation in West Junggar (NW China): Implications for accretionary tectonics in the southern Altaids. Tectonics 39: e2019TC005781.

  • Spencer C, Roberts N, Santosh M (2017) Growth, destruction, and preservation of Earth’s continental crust. Earth Sci Rev 172:87–106

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Public 42(1):313–345

    Article  Google Scholar 

  • Thorkelson DJ, Breitsprecher K (2005) Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos 79(1–2):25–41

    Article  Google Scholar 

  • Wan B, Li S, Xiao W, Windley BF (2018) Where and when did the Paleo-Asian ocean form? Precambr Res 317:241–252

    Article  Google Scholar 

  • Wang Q, Xu J, Zhao Z, Bao Z, Xu W, Xiong X (2004) Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem J 38(5):417–434

    Article  Google Scholar 

  • Wang D, Zhang X, Fu H (2006) SHRIMP U-Pb dating of zircons from the north Xiaoyanchi monzodiorite, East Tianshan, Xinjiang. China Geol Bull China 25(8):966–968

    Google Scholar 

  • Wang Q, Wyman DA, Xu J, Jian P, Zhao Z, Li C, Xu W, Ma J, He B (2007) Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71(10):2609–2636

    Article  Google Scholar 

  • Wang Y, Wang J, Wang L, Long L, Tang P, Liao Z, Zhang H, Shi Y (2012) The Tuerkubantao ophiolite mélange in Xinjiang, NW China: new evidence for the Erqis suture zone. Geosci Front 3(5):587–602

    Article  Google Scholar 

  • Wang B, Liu H, Shu L, Jahn B-m, Chung S-l, Zhai Y, Liu D (2014a) Early Neoproterozoic crustal evolution in northern Yili Block: insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan. Precambr Res 242:58–81

    Article  Google Scholar 

  • Wang F, Xu W, Gao F, Zhang H, Pei F, Zhao L, Yang Y (2014b) Precambrian terrane within the Songnen-Zhangguangcai Range Massif, NE China: evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Res 26(1):402–413

    Article  Google Scholar 

  • Wang Q, Hao L, Zhang X, Zhou J, Wang J, Li Q, Ma L, Zhang L, Qi Y, Tang G (2020) Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. Sci China Earth Sci 63(12):1992–2016

    Article  Google Scholar 

  • Wang P, Zhao G, Cawood PA, Han Y, Yu S, Liu Q, Yao J, Zhang D (2022) South Tarim tied to north India on the periphery of Rodinia and Gondwana and implications for the evolution of two supercontinents. Geology 50(2):131–136

    Article  Google Scholar 

  • Wen B, Evans DA, Wang C, Li Y, Jing X (2018) A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly. Geology 46(8):687–690

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G, (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc 164(1):31–47

    Article  Google Scholar 

  • Windley B, Maruyama S, Xiao W (2010) Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci 310(10):1250–1293

    Article  Google Scholar 

  • Wu C, Zhang Z, Zaw K, Della-Pasqua F, Tang J, Zheng Y, Wang C, San J (2006) Geochronology, geochemistry and tectonic significances of the Hongyuntan granitoids in the Qoltag area. Eastern Tianshan Acta Petrologica Sinica 22(5):1121–1134

    Google Scholar 

  • Xiao WJ, Santosh M (2014) The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res 25(4):1429–1444

    Article  Google Scholar 

  • Xiao S, Bao H, Wang H, Kaufman AJ, Zhou C, Li G, Yuan X, Ling H (2004) The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambr Res 130(1–4):1–26

    Article  Google Scholar 

  • Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang J, Ao SJ, Guo QQ, Cleven NR, Lin SF (2010) Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am J Sci 310(10):1553–1594

    Article  Google Scholar 

  • Xiao WJ, Sun M, Santosh M (2015a) Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geosci Front 6(2):137–140

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M, Chen HL (2015b) A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci 43:477–507

    Article  Google Scholar 

  • Xiao W, Windley BF, Han C, Liu W, Wan B, Zhang JE, Ao S, ZhangZ SD (2018) Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Sci Rev 186:94–128

    Article  Google Scholar 

  • Xiong X, Zhao Z, Bai Z, Mei H, Wang Y, Wang Q, Xu J, Niu H, Bao Z (2001) Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: Significance for the vertical growth of continental crust. Chin Sci Bull 46(10):811–817

    Article  Google Scholar 

  • Xu J, Shinjo R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30(12):1111–1114

    Article  Google Scholar 

  • Xu X, Wang H, Li P, Chen J, Ma Z, Zhu T, Wang N, Dong Y (2013) Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution. J Asian Earth Sci 72:33–62

    Article  Google Scholar 

  • Yan C, Shu L, Faure M, Chen Y, Huang R (2019) Time constraints on the closure of the Paleo-South China Ocean and the Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Insight from new detrital zircon analyses. Gondwana Res 73:175–189

    Article  Google Scholar 

  • Yang X, Deloule E, Xia Q, Fan Q, Feng M (2008) Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005541

    Article  Google Scholar 

  • Yang G, Li Y, Xiao W, Tong L (2015) OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth Sci Rev 150:477–496

    Article  Google Scholar 

  • Yang S, Humayun M, Salters VJ (2020) Elemental constraints on the amount of recycled crust in the generation of mid-oceanic ridge basalts (MORBs). Science Advances 6(26):eaba2923

  • Yao J, Cawood PA, Shu L, Zhao G (2019) Jiangnan Orogen, South China: A~ 970–820 Ma Rodinia margin accretionary belt. Earth Sci Rev 196:102872

    Article  Google Scholar 

  • Yao J, Cawood PA, Zhao G, Han Y, Xia X, Liu Q, Wang P (2021) Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. Nat Commun 12(1):1–10

    Article  Google Scholar 

  • Yogodzinski G, Kay R, Volynets O, Koloskov A, Kay S (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107(5):505–519

    Article  Google Scholar 

  • Zhang L, Ellis DJ, Jiang W (2002) Ultrahigh-pressure metamorphism in western Tianshan, China: Part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. Am Mineral 87(7):853–860

    Article  Google Scholar 

  • Zhang Z, Gu L, Wu C, Li W, Xi A, Wang S (2005) Zircon SHRIMP dating for the Weiya pluton, eastern Tianshan: Its geological implications. Acta Geologica Sinica (English Edition) 79(4):481–490

    Article  Google Scholar 

  • Zhang C, Li X, Li Z, Lu S, Ye H, Li H (2007a) Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambr Res 152(3–4):149–169

    Article  Google Scholar 

  • Zhang Z, Gu L, Wu C, Zhai J, Li W, Tang J (2007b) Early Indosinian Weiya gabbro in Eastern Tianshan, China: Elemental and Sr-Nd-O isotopic geochemistry, and its tectonic implications. Acta Geologica Sinica (english Edition) 81(3):424–432

    Article  Google Scholar 

  • Zhao G (2015) Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Res 27(3):1173–1180

    Article  Google Scholar 

  • Zhao J, Mooney WD, Zhang X, Li Z, Jin Z, Okaya N (2006) Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications. Earth Planet Sci Lett 241(3–4):804–814

    Article  Google Scholar 

  • Zhao G, Li S, Sun M, Wilde SA (2011) Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: Record in the North China Craton revisited. Int Geol Rev 53(11–12):1331–1356

    Article  Google Scholar 

  • Zhao P, He J, Deng C, Chen Y, Mitchell RN (2021) Early Neoproterozoic (870–820 Ma) amalgamation of the Tarim craton (northwestern China) and the final assembly of Rodinia. Geology 49(11):1277–1282

    Article  Google Scholar 

  • Zuo G, Zhang S, He G, Zhang Y (1991) Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region. China Tectonophys 188(3–4):385–392

    Article  Google Scholar 

  • Zuo G (1990) Plate tectonics and metallogenic regularities in Beishan region. Beijing Univ Pub House: 1–210 (in Chinese with English abstract)

Download references

Acknowledgements

We appreciate the Editors and reviewers, Yunpeng Dong and an anonymous one, for their constructive comments and suggestions that substantially improved the presentation of our work. This study was financially supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1301), the National Natural Science Foundation of China (41888101, 41822204), One Hundred Talent Program of the Chinese Academy of Sciences (CAS), the Science and Technology Major Project of Xinjiang Uygur Autonomous Region, China (2021A03001-1 & 4), the National Key Research and Development Program of China (2017YFC0601201), Youth Innovation Promotion Association Chinese Academy of sciences (2022446), the Chinese Ministry of Land and Resources for the Public Welfare Industry Research (201411026-1), the “Light of West China” Program of the CAS (2017-XBQNXZ-B-013, 2018-XBYJRC-003), and a Project of the China-Pakistan Joint Research Center on Earth Sciences of the CAS (131551KYSB20200021). This is a contribution to IGCP 622 and IGCP 710.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qigui Mao or Wenjiao Xiao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Mao, Q., Xiao, W. et al. Discovery of Neoproterozoic adakitic rocks in the Eastern Tianshan (NW China) of the southern Altaids. Int J Earth Sci (Geol Rundsch) 112, 981–997 (2023). https://doi.org/10.1007/s00531-023-02292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02292-8

Keywords

Navigation