Abstract
The Maures–Tanneron Massif is a key to putting new constraints on the age, nature, and tectonic setting of pre-Variscan metaigneous rocks in the southern Variscan Belt. Whole-rock geochemistry was combined with U–Pb isotopic data on zircon to gain insight into the pre-Variscan evolution and improve the knowledge of the southern Variscan domain. The geochemical study shows that the protolith of the studied samples is a high-K calc-alkaline granodiorite emplaced in the upper plate of a subduction zone, most probably in a continental arc setting, as suggested by numerous microdioritic enclaves. Zircon cores record a spread of ages between 609 and 548 Ma and define an age peak at c. 590 Ma, interpreted as the most likely emplacement age of the granodioritic protolith. This Ediacaran population shows a consistent zircon Th/U ratio (~ 0.5) which likely indicates long-lived magmatic activity in a continental arc setting and corroborates our geochemical interpretations. The zircon overgrowth rims give ages from 505 to 460 Ma and might be of metamorphic origin (lower Th/U ratios), related to an important tectono-thermal event that developed during Lower to Middle Ordovician times. The occurrence of older zircon grains (c. 1000 Ma and c. 1800–2500 Ma), either inherited from a crustal source or incorporated from country rocks during magma ascent, provides some constraints on the paleoposition of the magmatic arc, likely situated on the eastern shelf of the northern Gondwana margin.
Similar content being viewed by others
Data availability
All research data are provided within the article and its supplementary materials.
References
Abati J, Castiñeiras P, Arenas R et al (2007) Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited. Terra Nova 19:432–439. https://doi.org/10.1111/j.1365-3121.2007.00768.x
Abati J, Gerdes A, Fernández Suárez J et al (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. GSA Bull 122:219–235. https://doi.org/10.1130/B26572.1
Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214
Andonaegui P, Castiñeiras P, Cuadra PG et al (2012) The Corredoiras orthogneiss (NW Iberian Massif): Geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131:84–99. https://doi.org/10.1016/j.lithos.2011.11.005
Andonaegui P, Arenas R, Albert R et al (2016) The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics 681:6–14. https://doi.org/10.1016/j.tecto.2016.02.032
Arenas R, Martínez Catalán JR, Sánchez Martínez S et al (2007) The Vila de Cruces Ophiolite: A Remnant of the Early Rheic Ocean in the Variscan Suture of Galicia (Northwest Iberian Massif). J Geol 115:129–148. https://doi.org/10.1086/510645
Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320
Avigad D, Gerdes A, Morag N, Bechstädt T (2012) Coupled U-Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res 21:690–703
Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201
Ballèvre M, Fourcade S, Capdevila R et al (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036. https://doi.org/10.1016/j.gr.2011.07.030
Ballèvre M, Catalán JRM, López-Carmona A et al (2014) Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol Soc Lond Spec Publ 405:77–113. https://doi.org/10.1144/SP405.13
Barbarin B (1990) Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238. https://doi.org/10.1002/gj.3350250306
Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
Barbey P, Cheilletz A, Laumonier B (2001) The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an Early Ordovician rapakivi granite laccolith and its contact aureole. Comptes Rendus Académie Sci 332:129–136. https://doi.org/10.1016/S1251-8050(00)01506-8
Barboni M, Schoene B, Ovtcharova M et al (2013) Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chem Geol 342:76–93. https://doi.org/10.1016/j.chemgeo.2012.12.011
Bard JP, Caruba C (1981) Les séries leptynoamphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie? Comptes Rendus L’académie Sci Paris 292:611–614
Bellot J (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. J Virtual Explor 19:4
Bellot J-P, Triboulet C, Laverne C, Bronner G (2003) Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T–t–d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int J Earth Sci 92:7–26
Bellot J-P, Laverne C, Bronner G (2010) An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci 99:473–504. https://doi.org/10.1007/s00531-009-0416-6
Bellot J-P, Bronner G, Laverne C (2002) Transcurrent strain partitioning along a suture zone in the Maures massif (France): result of eastern indenter tectonics in European Variscides? Geol Soc Am Spec Pap
Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42. https://doi.org/10.1016/0191-8141(79)90019-1
Bialek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidow granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zircon ages mean? J Geosci 59:313–326. https://doi.org/10.3190/jgeosci.179
Bordet P (1957) Geologie de la partie centrale des Maures. Bull Ser Carte Geol Fr B 53:250
Bordet P, Gueirard S (1967) Carte géologique de la France à 1: 50 000. Notice explicative de la feuille de Saint-Tropez–cap Lardier. BRGM Orléans Fr
Bouloton J, Goncalves P, Pin C (1998) Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales): un cumulat d’affinité océanique impliqué dans la subduction éohercynienne? Comptes Rendus Académie Sci-Ser IIA-Earth Planet Sci 326:473–477
Briand B, Bouchardon J-L, Capiez P, Piboule M (2002) Felsic (A-type)–basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France). Geol Mag 139:291–311
Brown G, Thorpe R, Webb P (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc 141:413–426
Buscail F (2000) Contribution à la compréhension du problème géologique et géodynamique du massif des maures: le Métamorphisme régional modélisé dans le système KFMASH: analyse pargénétique, chémiographie, thermobarométrie, géochronologie Ar/ Ar. Université de Montpellier II, France
Caruba C (1983) Nouvelles données pétrographiques, minéralogiques et géochimiques sur le massif métamorphique hercynien des Maures (Var, France): comparaison avec les segments varisques voisins et essais d’interprétation géotechnique. Université de Nice, France
Casas JM, Murphy JB (2018) Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe. Tectonophysics 736:47–61. https://doi.org/10.1016/j.tecto.2018.04.012
Chantraine J, Autran A, Cavelier C (1996) Carte géologique de la France à 1/1000000 (geological map of France).
Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
Chelle-Michou C, Laurent O, Moyen J-F et al (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190. https://doi.org/10.1016/j.gr.2017.02.010
Chen F, Hegner E, Todt W (2000) Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc. Int J Earth Sci 88:791–802. https://doi.org/10.1007/s005310050306
Chessex R, Delaloye M, Bordet P (1967) Âges "plomb total" déterminés sur des zircons des massifs des Maures et de l’Esterel (France). C R Séances Société Phys Hist Nat Genève 97–106
Cocherie A, Baudin T, Autran A et al (2005) U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Société Géologique Fr 176:269–282. https://doi.org/10.2113/176.3.269
Cocks LRM, Torsvik TH (2011) The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth Sci Rev 106:1–51. https://doi.org/10.1016/j.earscirev.2011.01.007
Collett S, Schulmann K, Štípská P, Míková J (2020) Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Res 79:27–48. https://doi.org/10.1016/j.gr.2019.09.009
Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of Zircon Textures. Rev Mineral Geochem 53:469–500. https://doi.org/10.2113/0530469
Corsini M, Rolland Y (2009) Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci 341:214–223. https://doi.org/10.1016/j.crte.2008.12.002
Couzinié S, Laurent O, Poujol M et al (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287:16–34. https://doi.org/10.1016/j.lithos.2017.06.001
Couzinié S, Laurent O, Chelle-Michou C et al (2019) Detrital zircon U-Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: consequences for the crustal evolution of the north Gondwana margin. Precambrian Res 324:269–284. https://doi.org/10.1016/j.precamres.2019.01.016
Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. William Clowes, London, Britain
Crévola G, Pupin J-P (1994) Crystalline provence: Structure and variscan evolution. In: Chantraine J, Rolet J, Santallier DS et al (eds) Pre-Mesozoic geology in France and related areas. Springer, Berlin, Heidelberg, pp 426–441
de Hoÿm de Marien L (2019) Évolution pression-température-temps des unités varisques de haute-pression de l’est du Massif Central: implications géodynamiques. Université de Rennes
Demay A (1927) La zone mylonitique de Grimaud et la tectonique du massif des Maures. Bull Serv Carte Géol Fr 27:279–336
Demoux A, Schärer U, Corsini M (2008) Variscan evolution of the Tanneron massif, SE France, examined through U-Pb monazite ages. J Geol Soc 165:467–478. https://doi.org/10.1144/0016-76492007-045
Didier J, Barbarin B (1991) The different types of enclaves in granites-Nomenclature. pp 19–23
Díez Fernández R, Castiñeiras P, Gómez Barreiro J (2012) Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079. https://doi.org/10.1016/j.gr.2011.07.028
Díez Fernández R, Pereira MF, Foster DA (2015) Peralkaline and alkaline magmatism of the Ossa-Morena zone (SW Iberia): age, source, and implications for the Paleozoic evolution of Gondwanan lithosphere. Lithosphere 7:73–90. https://doi.org/10.1130/L379.1
Dombrowski A, Okrusch M, Richter P et al (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411. https://doi.org/10.1007/BF00260449
Domeier M (2016) A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res 36:275–295. https://doi.org/10.1016/j.gr.2015.08.003
Domeier M, Torsvik TH (2014) Plate tectonics in the late Paleozoic. Geosci Front 5:303–350. https://doi.org/10.1016/j.gsf.2014.01.002
Dörr W, Zulauf G, Fiala J et al (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85. https://doi.org/10.1016/S0040-1951(02)00189-0
Dörr W, Zulauf G, Gerdes A et al (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U-Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108. https://doi.org/10.1016/j.precamres.2014.12.015
Duchesne J-C, Liégeois J-P, Bolle O et al (2013) The fast evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162:195–220
Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpr Českoslov Akad Věd Rada Mat Prir Ved 90:1–85
Edel J-B, Casini L, Oggiano G et al (2014) Early Permian 90° clockwise rotation of the Maures–Estérel–Corsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geol Soc Lond Spec Publ 405:333–361. https://doi.org/10.1144/SP405.10
Edel J-B, Schulmann K, Lexa O et al (2015) Permian clockwise rotations of the Ebro and Corso-Sardinian blocks during Iberian-Armorican oroclinal bending: preliminary paleomagnetic data from the Catalan Coastal Range (NE Spain). Tectonophysics 657:172–186. https://doi.org/10.1016/j.tecto.2015.07.002
Edel JB, Schulmann K, Lexa O, Lardeaux JM (2018) Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci Rev 177:589–612. https://doi.org/10.1016/j.earscirev.2017.12.007
Faure M, Lardeaux J-M, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geosci 341:202–213. https://doi.org/10.1016/j.crte.2008.12.001
Finger F, Frasl G, Höck V, Steyrer HP (1989) The granitoids of the Moravian Zone of northeast Austria: products of a Cadomian active continental margin? Precambrian Res 45:235–245. https://doi.org/10.1016/0301-9268(89)90042-9
Finger F, Hanžl P, Pin C et al (2000) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? Geol Soc Lond Spec Publ 179:103–112. https://doi.org/10.1144/GSL.SP.2000.179.01.08
Fluck P, Piqué A, Schneider J-L, Whitechurch H (1991) Le socle vosgien/The vosgian basement. Sci Géologiques Bull Mém 44:207–235. https://doi.org/10.3406/sgeol.1991.1867
Folkes CB, de Silva SL, Schmitt AK, Cas RAF (2011) A reconnaissance of U-Pb zircon ages in the Cerro Galán system, NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. J Volcanol Geotherm Res 206:136–147. https://doi.org/10.1016/j.jvolgeores.2011.06.001
Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90
Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61
Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005
Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033
Garfunkel Z (2015) The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res 28:1257–1281. https://doi.org/10.1016/j.gr.2015.05.011
Gerbault M, Schneider J, Reverso-Peila A, Corsini M (2018) Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France-Geological and thermo-mechanical aspects. Tectonophysics 746:439–458. https://doi.org/10.1016/j.tecto.2016.12.019
Gerdes A, Montero P, Bea F et al (2002) Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. Int J Earth Sci 91:3–19. https://doi.org/10.1007/s005310100195
Gueirard S (1976) Le “Granite de Barral”. Un nouveau témoin des conditions sévères de métamorphisme qui ont affecté la région occidentale du Massif des Maures (Var, France). CR Acad Sci Paris D 283:455–457
Gueirard S (1982) A propos de l’origine des “Gneiss de Bormes” (Massif des Maures, Var, France). Comptes Rendus Académie Sci Ser 2 Mécanique Phys Chim Sci Univers Sci Terre 295:1125–1128
Gueirard S (1960) Description pétrographique et zonéographique des schistes cristallins des Maures (Var). Thèse d’Etat, Univ. Marseille and Annale de la Faculté des Sciences de Marseille, France
Guillot S, Ménot R-P (2009) Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus Geosci 341:253–265. https://doi.org/10.1016/j.crte.2008.11.010
Hanžl P, Janoušek V, Soejono I et al (2019) The rise of the Brunovistulicum: age, geological, petrological and geochemical character of the Neoproterozoic magmatic rocks of the Central Basic Belt of the Brno Massif. Int J Earth Sci 108:1165–1199. https://doi.org/10.1007/s00531-019-01700-2
Harris NB, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. Geol Soc Lond Spec Publ 19:67–81
Hart NR, Stockli DF, Hayman NW (2016) Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere 12:1166–1186. https://doi.org/10.1130/GES01273.1
Hawkesworth C, Gallagher K, Hergt J, McDermott F (1993) Mantle and slab contribution in arc magmas. Annu Rev Earth Planet Sci 21:175–204
Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489. https://doi.org/10.1007/BF00372365
Höhn S, Koglin N, Klopf L et al (2018) Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean–island magmatism. Int J Earth Sci 107:359–377. https://doi.org/10.1007/s00531-017-1497-2
Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62
Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69
Janoušek V, Farrow C, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259
Jegouzo P, Peucat J-J, Audren C (1986) Caracterisation et signification geodynamique des orthogneiss calco-alcalins d’age ordovicien de Bretagne meridionale. Bull Société Géologique Fr II:839–848. https://doi.org/10.2113/gssgfbull.II.5.839
Jones RE, Kirstein LA, Kasemann SA et al (2015) Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon. Geochim Cosmochim Acta 164:386–402. https://doi.org/10.1016/j.gca.2015.05.007
Jung S, Masberg P, Mihm D, Hoernes S (2009) Partial melting of diverse crustal sources—Constraints from Sr–Nd–O isotope compositions of quartz diorite–granodiorite–leucogranite associations (Kaoko Belt, Namibia). Lithos 111:236–251. https://doi.org/10.1016/j.lithos.2008.10.010
Kirkland CL, Smithies RH, Taylor RJM et al (2015) Zircon Th/U ratios in magmatic environs. Lithos 212–215:397–414. https://doi.org/10.1016/j.lithos.2014.11.021
Kirsch M, Paterson SR, Wobbe F et al (2016) Temporal histories of Cordilleran continental arcs: testing models for magmatic episodicity. Am Mineral 101:2133–2154. https://doi.org/10.2138/am-2016-5718
Koglin N, Zeh A, Franz G et al (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Res 55:135–152. https://doi.org/10.1016/j.gr.2017.11.001
Koppers AA (2002) ArArCALC—software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619
Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc 171:83–95. https://doi.org/10.1144/jgs2013-059
Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geol Landesamts 1.
Kröner A, Jaeckel P, Opletal M (1994) Pb-Pb and U-Pb zircon ages for orthogneisses from eastern Bohemia: further evidence for a major Cambro-Ordovician magmatic event. J Czech Geol Soc 39:61
Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). Int J Earth Sci 90:304–324
Lardeaux J, Dufour E (1987) Superposed strain patterns in the Variscan Chain—example in the northern Monts du Lyonnais area (French Massif-Central). Comptes Rendus Acad Sci Ser II 305:61–64
Lardeaux JM, Schulmann K, Faure M et al (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geol Soc Lond Spec Publ 405:7–44. https://doi.org/10.1144/SP405.14
Lasnier B, Leyreloup A, Marchand J (1973) Découverte d’un granite ≪ charnockitique ≫ au sein de ≪ gneiss œillés ≫ Perspectives nouvelles sur l’origine de certaines leptynites du Massif Armoricain Méridional (France). Contrib Mineral Petrol 41:131–144. https://doi.org/10.1007/BF00375038
Laverne C, Bronner G, Bellot J-P (1997) Did the ultrabasites from the Hercynian Maures massif (Var, France) originate in a fore-arc basin? Petrological and mineralogical evidence. Comptes Rendus Acad Sci Ser IIA Earth Planet Sci 10:765–771
Ledru P, Lardeaux JM, Santallier D et al (1989) Ou sont les nappes dans le massif central francais? Bull Société Géologique Fr. https://doi.org/10.2113/gssgfbull.V.3.605
Lee J-Y, Marti K, Severinghaus JP et al (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512
Liégeois J-P, Abdelsalam MG, Ennih N, Ouabadi A (2013) Metacraton: nature, genesis and behavior. Gondwana Res 23:220–237. https://doi.org/10.1016/j.gr.2012.02.016
Linnemann U (2007) Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development. Geol Soc Lond Spec Publ 286:35. https://doi.org/10.1144/SP286.4
Linnemann U, Gehmlich M, Tichomirowa M et al (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131. https://doi.org/10.1144/GSL.SP.2000.179.01.10
Linnemann U, Pereira F, Jeffries TE et al (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43. https://doi.org/10.1016/j.tecto.2008.05.002
Linnemann U, Ouzegane K, Drareni A et al (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb–LA-ICP-MS detrital zircon ages. Lithos 123:188–203
Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278. https://doi.org/10.1016/j.precamres.2013.08.007
Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geological Society of America
Ludwig K (2011) User’s manual for Isoplot 4.15: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, USA concentrations: Loess and the upper continental crust. Geochem Geophys Geosystems 2.
Maluski H (1971) Etude 87Rb-87Sr des minéraux des gneiss de Bormes (Maures, France). Comptes Rendus L’académie Sci Paris 273:1470–1473
Maluski H, Allegre C (1970) Problème de la datation par le couple 87 Rb–86 Sr des socles gneissiques: exemple des gneiss de Bormes (massif hercynien des Maures, France). Comptes Rendus Académie Sci Sér IIA 270:18–21
Maluski H, Gueirard S (1978) Mise en évidence par la méthode 39Ar/40Ar de l’âge à 580 Ma du granite de Barral (Massif des Maures, Var, France). Comptes Rendus L’académie Sci Paris 287:195–198
Margalef A, Castiñeiras P, Casas JM et al (2016) Detrital zircons from the Ordovician rocks of the Pyrenees: geochronological constraints and provenance. Tectonophysics 681:124–134
Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247. https://doi.org/10.1111/j.1365-3121.2011.01005.x
Martínez Catalán JR, Arenas R, García FD et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. 4-D framework of continental crust. Geological Society of America Memoir Boulder, Colorado, pp 403–423
Martínez Catalán JR, Arenas R, Abati J et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. Comptes Rendus Geosci 341:114–126. https://doi.org/10.1016/j.crte.2008.11.004
Martínez Catalán JR, Collett S, Schulmann K et al (2019) Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif. Int J Earth Sci, European Variscan belt. https://doi.org/10.1007/s00531-019-01800-z
Martínez Catalán JR, Schulmann K, Ghienne J-F (2021) The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci Rev 220:103700. https://doi.org/10.1016/j.earscirev.2021.103700
Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374. https://doi.org/10.1016/0040-1951(86)90237-4
Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128. https://doi.org/10.1046/j.1365-3121.2001.00327.x
Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50(1):89–118
Mazur S, Kröner A, Szczepański J et al (2010) Single zircon U-Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geol Mag 147:508–526. https://doi.org/10.1017/S001675680999080X
McKay MP, Jackson WT, Hessler AM (2018) Tectonic stress regime recorded by zircon Th/U. Gondwana Res 57:1–9. https://doi.org/10.1016/j.gr.2018.01.004
Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25. https://doi.org/10.1016/j.gr.2009.05.007
Merdith AS, Williams SE, Collins AS et al (2021) Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci Rev 214:103477. https://doi.org/10.1016/j.earscirev.2020.103477
Miller JS, Matzel JEP, Miller CF et al (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019
Mingram B, Kröner A, Hegner E, Krentz O (2004) Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. Int J Earth Sci 93:706–727. https://doi.org/10.1007/s00531-004-0414-7
Mlčoch B, Schulmann K (1992) Superposition of Variscan ductile shear deformation on pre-Variscan mantled gneiss structure (Catherine dome, Erzgebirge, Bohemian massif). Geol Rundsch 81:501–513. https://doi.org/10.1007/BF01828612
Morillon A-C, Féraud G, Sosson M et al (2000) Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321:103–126
Moussavou M (1998) Contribution à l’histoire thermo-tectonique varisque du massif des Maures, par la typologie du zircon et la géochronologie U/Pb sur minéraux accessoires (Var, France). Université de Montpellier 2
Moyen J-F, Laurent O, Chelle-Michou C et al (2017) Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177. https://doi.org/10.1016/j.lithos.2016.09.018
Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth Planet Sci Lett 224:275–293
Murphy JB, Gutierrez-Alonso G, Nance RD et al (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328
Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31. https://doi.org/10.1016/S0040-1951(02)00187-7
Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. https://doi.org/10.1016/j.gr.2009.08.001
Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135. https://doi.org/10.1016/j.gsf.2011.11.008
Oberc-Dziedzic T, Kryza R, Pin C et al (2009) The Orthogneiss and Schist Complex of the Karkonosze-Izera Massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24
Okrusch M, Richter P (1986) Orthogneisses of the Spessart crystalline complex, Northwest Bavaria: indicators of the geotectonic environment? Geol Rundsch 75:555–568. https://doi.org/10.1007/BF01820631
Oliot E, Melleton J, Schneider J et al (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull Société Géologique Fr 186:145–169
Padel M, Clausen S, Álvaro JJ, Casas JM (2018) Review of the Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geol Acta 16:339–355
Paquette J-L, Ballèvre M, Peucat J-J, Cornen G (2017) From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294–295:418–437. https://doi.org/10.1016/j.lithos.2017.10.005
Paton C, Woodhead JD, Hellstrom JC et al (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002618
Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48
Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983
Pearce JA (1996) A user’s guide to basalt discrimination diagrams. Trace Elem Geochem Volcan Rocks Appl Massive Sulphide Explor Geol Assoc Can Short Course Notes 12:113
Peccerillo A, Taylor S (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81
Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472. https://doi.org/10.1007/BF00344081
Pitcher WS (1997) The nature and origin of granite. Springer Science & Business Media, Berlin
Quesada C, Bellido F, Dallmeyer RD et al (1991) Terranes within the Iberian Massif: correlations with West African Sequences. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-atlantic correlatives. Springer, Berlin, Heidelberg, pp 267–293
Roger F, Respaut J, Brunel M et al (2004) U-Pb dating of Augen orthogneisses from the axial zone of the Montague Noire (Southern of Massif Central): new witness of Ordovician magmatism into the Variscan Belt. Comptes Rendus Géoscience 336:19–28
Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271–285
Rolland Y, Corsini M, Demoux A (2009) Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along a transpressional margin. Bull Société Géologique Fr 180:217–230. https://doi.org/10.2113/gssgfbull.180.3.217
Rossi P, Oggiano G, Cocherie A (2009) A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. Comptes Rendus Geosci 341:224–238. https://doi.org/10.1016/j.crte.2008.12.005
Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138. https://doi.org/10.1016/S0009-2541(01)00355-2
Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642
Schneider J, Corsini M, Reverso-Peila A, Lardeaux J-M (2014) Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France). Geol Soc Lond Spec Publ 405:313–331. https://doi.org/10.1144/SP405.4
Schulmann K (1990) Fabric and kinematic study of the Bíteš orthogneiss (southwestern Moravia): result of large-scale northeastward shearing parallel to the Moldanubian/Moravian boundary. Tectonophysics 177:229–244. https://doi.org/10.1016/0040-1951(90)90283-E
Schulmann K, Ledru P, Autran A et al (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92. https://doi.org/10.1007/BF01828768
Schulmann K, Konopásek J, Janoušek V et al (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci 341:266–286. https://doi.org/10.1016/j.crte.2008.12.006
Schulmann K, Catalán JRM, Lardeaux JM et al (2014) The Variscan orogeny: extent, timescale and the formation of the European crust. Geol Soc Lond Spec Publ 405:1–6. https://doi.org/10.1144/SP405.15
Seyler M (1986) Petrology and genesis of Hercynian alkaline orthogneisses from Provence, France. J Petrol 27:1229–1251
Shand SJ (1943) Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley & sons, New York
Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, Cambridge
Siebel W, Raschka H, Irber W et al (1997) Early palaeozoic acid magmatism in the Saxothuringian Belt: new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the fichtelgebirge, SE Germany. J Petrol 38:203–230. https://doi.org/10.1093/petroj/38.2.203
Sláma J, Košler J, Condon DJ et al (2008) Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
Soejono I, Janoušek V, Žáčková E et al (2017) Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J Earth Sci 106:2109–2129. https://doi.org/10.1007/s00531-016-1416-y
Stampfli GM, Hochard C, Vérard C et al (2013) The formation of Pangea. Tectonophysics 593:1–19. https://doi.org/10.1016/j.tecto.2013.02.037
Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:359–362
Stephan T, Kroner U, Romer RL (2019a) The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geol Mag 156:281–307. https://doi.org/10.1017/S0016756818000031
Stephan T, Kroner U, Romer RL, Rösel D (2019b) From a bipartite Gondwanan shelf to an arcuate Variscan belt: the early Paleozoic evolution of northern Peri-Gondwana. Earth Sci Rev 192:491–512. https://doi.org/10.1016/j.earscirev.2019.03.012
Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Geol Fören Stockh Förh 48:607–609
Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345
Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44. https://doi.org/10.1016/S0024-4937(98)00024-3
Tabaud AS, Štípská P, Mazur S et al (2021) Evolution of a Cambro-Ordovician active margin in northern Gondwana: Geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondwana Res 90:1–26. https://doi.org/10.1016/j.gr.2020.10.011
Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265
Teipel U, Eichhorn R, Loth G et al (2004) U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801. https://doi.org/10.1007/s00531-004-0419-2
Tichomirowa M, Berger H-J, Koch EA et al (2001) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332. https://doi.org/10.1016/S0024-4937(00)00066-9
Tichomirowa M, Sergeev S, Berger H-J, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396
Tindle AG, Pearce JA (1983) Assimilation and partial melting of continental crust: evidence from the mineralogy and geochemistry of autoliths and xenoliths. Lithos 16:185–202. https://doi.org/10.1016/0024-4937(83)90023-3
Torsvik TH, Cocks LRM (2011) The Palaeozoic palaeogeography of central Gondwana. Geol Soc Lond Spec Publ 357:137–166
Torsvik TH, Müller RD, Van der Voo R et al (2008) Global plate motion frames: toward a unified model. Rev Geophys. https://doi.org/10.1029/2007RG000227
Toutin-Morin N, Bonijoly D, Brocard C, et al (1993) Enregistrement sédimentaire de l’évolution post-hercynienne en bordure des Maures et du Tanneron, du carbonifère supérieur à l’Actuel. Géologie Fr 3–22
Turner G, Huneke J, Podosek F, Wasserburg G (1971) 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet Sci Lett 12:19–35
Vauchez A, Bufalo M (1985) La limite Maures occidentales-Maures orientales (Var, France): un décrochement ductile senestre majeur entre deux provinces structurales très contrastées. Comptes Rendus Académie Sci Sér 2 Mécanique Phys Chim Sci Univers Sci Terre 301:1059–1062
Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194
Vialette Y, Casquet C, Fúster J, et al (1987) Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jahrb Für Mineral Monatshefte 465–479
Villaseca C, Merino Martínez E, Orejana D et al (2016) Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res 34:60–83. https://doi.org/10.1016/j.gr.2016.03.004
Wiedenbeck M, Alle P, Corfu F et al (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23
Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gondwana Res 22:855–865
Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343
Winter J (2001) Introduction to igneous and metamorphic petrology. Prentice-Hall Inc., Saddle River NJ
Yakymchuk C, Kirkland CL, Clark C (2018) Th/U ratios in metamorphic zircon. J Metamorph Geol 36:715–737. https://doi.org/10.1111/jmg.12307
Žák J, Sláma J (2018) How far did the Cadomian ʽterranesʼ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. Int Geol Rev 60:319–338. https://doi.org/10.1080/00206814.2017.1334599
Zieger J, Linnemann U, Hofmann M et al (2018) A new U-Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. Int J Earth Sci 107:933–953. https://doi.org/10.1007/s00531-017-1511-8
Zurbriggen R (2015) Ordovician orogeny in the Alps: a reappraisal. Int J Earth Sci 104:335–350. https://doi.org/10.1007/s00531-014-1090-x
Acknowledgements
This work is a contribution to the Research Project no. 310560 which is part of the Strategic Research Plan of the Czech Geological Survey (DKRVO/ČGS 2018–2022). We are grateful to M. Poujol (Geosciences Rennes, France), N. Novotná and J. Míková (Czech Geological Survey, Prague) for the LA–ICP–MS analyses. We also thank M. Štrba for mineral separation. This work was improved following constructive comments by Stanislaw Mazur and an anonymous reviewer. Ulrich Riller is thanked for editorial handling.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendices
Appendix 1
LA–ICP–MS analytical methods
LA‒ICP‒MS U‒Pb analyses on zircons were conducted at the Czech Geological Survey, Prague, and at the GeOHeLiS Platform, University of Rennes, France. Zircons were analysed using an Analyte Excite 193 nm excimer laser ablation system (LA; Proton Machines), equipped with a two-volume HelEx ablation cell, in tandem with an Agilent 7900× (Prague) or an Agilent 7700× (Rennes) ICPMS (Agilent Technologies Inc., Santa Clara, USA). Samples were ablated in He atmosphere (0.8 l min–1) at a pulse repetition rate of 5 Hz using a spot size of 25 μm and laser fluence of 7.59 J cm–2. Each measurement consisted of 20 s of blank acquisition followed by ablation of the sample for a further 40 s of signal collection at masses 202, 204, 206, 207, 208, 232 and 238 using the SEM detector, with one point per mass peak and the respective dwell times of 10, 10, 15, 30, 20, 10 and 15 ms per mass (total sweep time of 0.134 s). Instrumental drift was monitored by repeat measurements of 91,500 reference zircon (Wiedenbeck et al. 1995) after every 20 unknowns. Data deconvolution using Iolite software followed the method described by Paton et al. (2010), including an ‘on peak’ gas blank subtraction followed by correction for laser-induced elemental fractionation (LIEF) by comparison with the behaviour of the 91,500 reference zircon (Wiedenbeck et al. 1995) which yielded in this study a Concordia age of 1062.9 ± 2.1 Ma. In addition, zircon reference samples GJ-1 (~ 609 Ma, Jackson et al. 2004) and Plešovice (337 Ma, Sláma et al. 2008) were analysed periodically during this study and yielded Concordia ages of 604 ± 2.0 Ma (Rennes); 606.6 ± 3.2 Ma (Prague) and 340 ± 3 Ma (Rennes); 337.7 ± 1.2 Ma (Prague) (2σ), respectively.
Appendix 2
40Ar–39Ar method
The argon isotopic interferences on K and Ca were determined by the irradiation of KF and CaF2 pure salts from which the following correction factors were obtained: (40Ar/39Ar)K = 2.97 × 10–2 ± 10–3 at 1σ, (38Ar/39Ar)K = 1.24 × 10–2 ± 5 × 10–4 at 1σ, (39Ar/37Ar)Ca = 7.27 × 10–4 ± 4 × 10–5 at 1σ, and (36Ar/37Ar)Ca = 2.82 × 10–4 ± 3 × 10–5 at 1σ. 40Ar/39Ar step heating analyses were performed at Geoazur Nice (France) using a CO2 Synrad 48-5 laser. Isotopic measurements were performed by a VG 3600 mass spectrometer working with a Daly detector system and connected to a stainless-steel purification line with two GP50 Al–Zr Getters operating at 400 °C with an (LN2 + Cl2CH2) cold trap. The mass spectrometer is a 120° M.A.S.S.E. flight tube fitted to a Baur-Signer GS-98 source and a Balzers SEV217 electron multiplier. The blanks of the extraction and purification laser system were measured every third step and subtracted from each argon isotope from the subsequent gas fraction. Typical blank values were in the range of 6–18, 0.3–2.0, 0.4–1.2 and 0.6–1.4 × 10–13 ccSTP for the mass 40, 39, 37 and 36, respectively. The mass-discrimination was monitored by regularly analysing the air pipette volume. Blanks were monitored after every three analyses. All parameters and relative abundance values are provided in supplementary materials and have been corrected for blanks, mass discrimination, and radioactive decay. Atmospheric 40Ar was estimated using a value of the initial 40Ar/36Ar of 298.56 (Lee et al. 2006). Our criteria for the determination of a plateau are as follows: a plateau must include at least 70% of 39Ar released, over a minimum of three consecutive steps agreeing at a 95% confidence level. Plateau ages are given at the 2σ error level, and the plateau age uncertainties include analytical and J value errors. All the errors on the inverse isochron, total fusion ages, and initial 40Ar/36Ar ratios are quoted at the 2σ error.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tabaud, A.S., Lardeaux, J.M. & Corsini, M. A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin. Int J Earth Sci (Geol Rundsch) 112, 925–950 (2023). https://doi.org/10.1007/s00531-022-02277-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-022-02277-z