Skip to main content
Log in

A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Maures–Tanneron Massif is a key to putting new constraints on the age, nature, and tectonic setting of pre-Variscan metaigneous rocks in the southern Variscan Belt. Whole-rock geochemistry was combined with U–Pb isotopic data on zircon to gain insight into the pre-Variscan evolution and improve the knowledge of the southern Variscan domain. The geochemical study shows that the protolith of the studied samples is a high-K calc-alkaline granodiorite emplaced in the upper plate of a subduction zone, most probably in a continental arc setting, as suggested by numerous microdioritic enclaves. Zircon cores record a spread of ages between 609 and 548 Ma and define an age peak at c. 590 Ma, interpreted as the most likely emplacement age of the granodioritic protolith. This Ediacaran population shows a consistent zircon Th/U ratio (~ 0.5) which likely indicates long-lived magmatic activity in a continental arc setting and corroborates our geochemical interpretations. The zircon overgrowth rims give ages from 505 to 460 Ma and might be of metamorphic origin (lower Th/U ratios), related to an important tectono-thermal event that developed during Lower to Middle Ordovician times. The occurrence of older zircon grains (c. 1000 Ma and c. 1800–2500 Ma), either inherited from a crustal source or incorporated from country rocks during magma ascent, provides some constraints on the paleoposition of the magmatic arc, likely situated on the eastern shelf of the northern Gondwana margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All research data are provided within the article and its supplementary materials.

References

  • Abati J, Castiñeiras P, Arenas R et al (2007) Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited. Terra Nova 19:432–439. https://doi.org/10.1111/j.1365-3121.2007.00768.x

    Article  Google Scholar 

  • Abati J, Gerdes A, Fernández Suárez J et al (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. GSA Bull 122:219–235. https://doi.org/10.1130/B26572.1

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Andonaegui P, Castiñeiras P, Cuadra PG et al (2012) The Corredoiras orthogneiss (NW Iberian Massif): Geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131:84–99. https://doi.org/10.1016/j.lithos.2011.11.005

    Article  Google Scholar 

  • Andonaegui P, Arenas R, Albert R et al (2016) The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics 681:6–14. https://doi.org/10.1016/j.tecto.2016.02.032

    Article  Google Scholar 

  • Arenas R, Martínez Catalán JR, Sánchez Martínez S et al (2007) The Vila de Cruces Ophiolite: A Remnant of the Early Rheic Ocean in the Variscan Suture of Galicia (Northwest Iberian Massif). J Geol 115:129–148. https://doi.org/10.1086/510645

    Article  Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320

    Article  Google Scholar 

  • Avigad D, Gerdes A, Morag N, Bechstädt T (2012) Coupled U-Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res 21:690–703

    Article  Google Scholar 

  • Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201

    Article  Google Scholar 

  • Ballèvre M, Fourcade S, Capdevila R et al (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036. https://doi.org/10.1016/j.gr.2011.07.030

    Article  Google Scholar 

  • Ballèvre M, Catalán JRM, López-Carmona A et al (2014) Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol Soc Lond Spec Publ 405:77–113. https://doi.org/10.1144/SP405.13

    Article  Google Scholar 

  • Barbarin B (1990) Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238. https://doi.org/10.1002/gj.3350250306

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1

    Article  Google Scholar 

  • Barbey P, Cheilletz A, Laumonier B (2001) The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an Early Ordovician rapakivi granite laccolith and its contact aureole. Comptes Rendus Académie Sci 332:129–136. https://doi.org/10.1016/S1251-8050(00)01506-8

    Article  Google Scholar 

  • Barboni M, Schoene B, Ovtcharova M et al (2013) Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chem Geol 342:76–93. https://doi.org/10.1016/j.chemgeo.2012.12.011

    Article  Google Scholar 

  • Bard JP, Caruba C (1981) Les séries leptynoamphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie? Comptes Rendus L’académie Sci Paris 292:611–614

    Google Scholar 

  • Bellot J (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. J Virtual Explor 19:4

    Article  Google Scholar 

  • Bellot J-P, Triboulet C, Laverne C, Bronner G (2003) Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T–t–d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int J Earth Sci 92:7–26

    Article  Google Scholar 

  • Bellot J-P, Laverne C, Bronner G (2010) An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci 99:473–504. https://doi.org/10.1007/s00531-009-0416-6

    Article  Google Scholar 

  • Bellot J-P, Bronner G, Laverne C (2002) Transcurrent strain partitioning along a suture zone in the Maures massif (France): result of eastern indenter tectonics in European Variscides? Geol Soc Am Spec Pap

  • Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42. https://doi.org/10.1016/0191-8141(79)90019-1

    Article  Google Scholar 

  • Bialek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidow granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zircon ages mean? J Geosci 59:313–326. https://doi.org/10.3190/jgeosci.179

    Article  Google Scholar 

  • Bordet P (1957) Geologie de la partie centrale des Maures. Bull Ser Carte Geol Fr B 53:250

    Google Scholar 

  • Bordet P, Gueirard S (1967) Carte géologique de la France à 1: 50 000. Notice explicative de la feuille de Saint-Tropez–cap Lardier. BRGM Orléans Fr

  • Bouloton J, Goncalves P, Pin C (1998) Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales): un cumulat d’affinité océanique impliqué dans la subduction éohercynienne? Comptes Rendus Académie Sci-Ser IIA-Earth Planet Sci 326:473–477

    Google Scholar 

  • Briand B, Bouchardon J-L, Capiez P, Piboule M (2002) Felsic (A-type)–basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France). Geol Mag 139:291–311

    Article  Google Scholar 

  • Brown G, Thorpe R, Webb P (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc 141:413–426

    Article  Google Scholar 

  • Buscail F (2000) Contribution à la compréhension du problème géologique et géodynamique du massif des maures: le Métamorphisme régional modélisé dans le système KFMASH: analyse pargénétique, chémiographie, thermobarométrie, géochronologie Ar/ Ar. Université de Montpellier II, France

    Google Scholar 

  • Caruba C (1983) Nouvelles données pétrographiques, minéralogiques et géochimiques sur le massif métamorphique hercynien des Maures (Var, France): comparaison avec les segments varisques voisins et essais d’interprétation géotechnique. Université de Nice, France

    Google Scholar 

  • Casas JM, Murphy JB (2018) Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe. Tectonophysics 736:47–61. https://doi.org/10.1016/j.tecto.2018.04.012

    Article  Google Scholar 

  • Chantraine J, Autran A, Cavelier C (1996) Carte géologique de la France à 1/1000000 (geological map of France).

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Chelle-Michou C, Laurent O, Moyen J-F et al (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190. https://doi.org/10.1016/j.gr.2017.02.010

    Article  Google Scholar 

  • Chen F, Hegner E, Todt W (2000) Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc. Int J Earth Sci 88:791–802. https://doi.org/10.1007/s005310050306

    Article  Google Scholar 

  • Chessex R, Delaloye M, Bordet P (1967) Âges "plomb total" déterminés sur des zircons des massifs des Maures et de l’Esterel (France). C R Séances Société Phys Hist Nat Genève 97–106

  • Cocherie A, Baudin T, Autran A et al (2005) U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Société Géologique Fr 176:269–282. https://doi.org/10.2113/176.3.269

    Article  Google Scholar 

  • Cocks LRM, Torsvik TH (2011) The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth Sci Rev 106:1–51. https://doi.org/10.1016/j.earscirev.2011.01.007

    Article  Google Scholar 

  • Collett S, Schulmann K, Štípská P, Míková J (2020) Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Res 79:27–48. https://doi.org/10.1016/j.gr.2019.09.009

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of Zircon Textures. Rev Mineral Geochem 53:469–500. https://doi.org/10.2113/0530469

    Article  Google Scholar 

  • Corsini M, Rolland Y (2009) Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci 341:214–223. https://doi.org/10.1016/j.crte.2008.12.002

    Article  Google Scholar 

  • Couzinié S, Laurent O, Poujol M et al (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287:16–34. https://doi.org/10.1016/j.lithos.2017.06.001

    Article  Google Scholar 

  • Couzinié S, Laurent O, Chelle-Michou C et al (2019) Detrital zircon U-Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: consequences for the crustal evolution of the north Gondwana margin. Precambrian Res 324:269–284. https://doi.org/10.1016/j.precamres.2019.01.016

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. William Clowes, London, Britain

    Book  Google Scholar 

  • Crévola G, Pupin J-P (1994) Crystalline provence: Structure and variscan evolution. In: Chantraine J, Rolet J, Santallier DS et al (eds) Pre-Mesozoic geology in France and related areas. Springer, Berlin, Heidelberg, pp 426–441

    Chapter  Google Scholar 

  • de Hoÿm de Marien L (2019) Évolution pression-température-temps des unités varisques de haute-pression de l’est du Massif Central: implications géodynamiques. Université de Rennes

  • Demay A (1927) La zone mylonitique de Grimaud et la tectonique du massif des Maures. Bull Serv Carte Géol Fr 27:279–336

    Google Scholar 

  • Demoux A, Schärer U, Corsini M (2008) Variscan evolution of the Tanneron massif, SE France, examined through U-Pb monazite ages. J Geol Soc 165:467–478. https://doi.org/10.1144/0016-76492007-045

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites-Nomenclature. pp 19–23

  • Díez Fernández R, Castiñeiras P, Gómez Barreiro J (2012) Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079. https://doi.org/10.1016/j.gr.2011.07.028

    Article  Google Scholar 

  • Díez Fernández R, Pereira MF, Foster DA (2015) Peralkaline and alkaline magmatism of the Ossa-Morena zone (SW Iberia): age, source, and implications for the Paleozoic evolution of Gondwanan lithosphere. Lithosphere 7:73–90. https://doi.org/10.1130/L379.1

    Article  Google Scholar 

  • Dombrowski A, Okrusch M, Richter P et al (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411. https://doi.org/10.1007/BF00260449

    Article  Google Scholar 

  • Domeier M (2016) A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res 36:275–295. https://doi.org/10.1016/j.gr.2015.08.003

    Article  Google Scholar 

  • Domeier M, Torsvik TH (2014) Plate tectonics in the late Paleozoic. Geosci Front 5:303–350. https://doi.org/10.1016/j.gsf.2014.01.002

    Article  Google Scholar 

  • Dörr W, Zulauf G, Fiala J et al (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85. https://doi.org/10.1016/S0040-1951(02)00189-0

    Article  Google Scholar 

  • Dörr W, Zulauf G, Gerdes A et al (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U-Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108. https://doi.org/10.1016/j.precamres.2014.12.015

    Article  Google Scholar 

  • Duchesne J-C, Liégeois J-P, Bolle O et al (2013) The fast evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162:195–220

    Article  Google Scholar 

  • Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpr Českoslov Akad Věd Rada Mat Prir Ved 90:1–85

    Google Scholar 

  • Edel J-B, Casini L, Oggiano G et al (2014) Early Permian 90° clockwise rotation of the Maures–Estérel–Corsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geol Soc Lond Spec Publ 405:333–361. https://doi.org/10.1144/SP405.10

    Article  Google Scholar 

  • Edel J-B, Schulmann K, Lexa O et al (2015) Permian clockwise rotations of the Ebro and Corso-Sardinian blocks during Iberian-Armorican oroclinal bending: preliminary paleomagnetic data from the Catalan Coastal Range (NE Spain). Tectonophysics 657:172–186. https://doi.org/10.1016/j.tecto.2015.07.002

    Article  Google Scholar 

  • Edel JB, Schulmann K, Lexa O, Lardeaux JM (2018) Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci Rev 177:589–612. https://doi.org/10.1016/j.earscirev.2017.12.007

    Article  Google Scholar 

  • Faure M, Lardeaux J-M, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geosci 341:202–213. https://doi.org/10.1016/j.crte.2008.12.001

    Article  Google Scholar 

  • Finger F, Frasl G, Höck V, Steyrer HP (1989) The granitoids of the Moravian Zone of northeast Austria: products of a Cadomian active continental margin? Precambrian Res 45:235–245. https://doi.org/10.1016/0301-9268(89)90042-9

    Article  Google Scholar 

  • Finger F, Hanžl P, Pin C et al (2000) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? Geol Soc Lond Spec Publ 179:103–112. https://doi.org/10.1144/GSL.SP.2000.179.01.08

    Article  Google Scholar 

  • Fluck P, Piqué A, Schneider J-L, Whitechurch H (1991) Le socle vosgien/The vosgian basement. Sci Géologiques Bull Mém 44:207–235. https://doi.org/10.3406/sgeol.1991.1867

    Article  Google Scholar 

  • Folkes CB, de Silva SL, Schmitt AK, Cas RAF (2011) A reconnaissance of U-Pb zircon ages in the Cerro Galán system, NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. J Volcanol Geotherm Res 206:136–147. https://doi.org/10.1016/j.jvolgeores.2011.06.001

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61

    Article  Google Scholar 

  • Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Garfunkel Z (2015) The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res 28:1257–1281. https://doi.org/10.1016/j.gr.2015.05.011

    Article  Google Scholar 

  • Gerbault M, Schneider J, Reverso-Peila A, Corsini M (2018) Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France-Geological and thermo-mechanical aspects. Tectonophysics 746:439–458. https://doi.org/10.1016/j.tecto.2016.12.019

    Article  Google Scholar 

  • Gerdes A, Montero P, Bea F et al (2002) Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. Int J Earth Sci 91:3–19. https://doi.org/10.1007/s005310100195

    Article  Google Scholar 

  • Gueirard S (1976) Le “Granite de Barral”. Un nouveau témoin des conditions sévères de métamorphisme qui ont affecté la région occidentale du Massif des Maures (Var, France). CR Acad Sci Paris D 283:455–457

    Google Scholar 

  • Gueirard S (1982) A propos de l’origine des “Gneiss de Bormes” (Massif des Maures, Var, France). Comptes Rendus Académie Sci Ser 2 Mécanique Phys Chim Sci Univers Sci Terre 295:1125–1128

    Google Scholar 

  • Gueirard S (1960) Description pétrographique et zonéographique des schistes cristallins des Maures (Var). Thèse d’Etat, Univ. Marseille and Annale de la Faculté des Sciences de Marseille, France

  • Guillot S, Ménot R-P (2009) Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus Geosci 341:253–265. https://doi.org/10.1016/j.crte.2008.11.010

    Article  Google Scholar 

  • Hanžl P, Janoušek V, Soejono I et al (2019) The rise of the Brunovistulicum: age, geological, petrological and geochemical character of the Neoproterozoic magmatic rocks of the Central Basic Belt of the Brno Massif. Int J Earth Sci 108:1165–1199. https://doi.org/10.1007/s00531-019-01700-2

    Article  Google Scholar 

  • Harris NB, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. Geol Soc Lond Spec Publ 19:67–81

    Article  Google Scholar 

  • Hart NR, Stockli DF, Hayman NW (2016) Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere 12:1166–1186. https://doi.org/10.1130/GES01273.1

    Article  Google Scholar 

  • Hawkesworth C, Gallagher K, Hergt J, McDermott F (1993) Mantle and slab contribution in arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489. https://doi.org/10.1007/BF00372365

    Article  Google Scholar 

  • Höhn S, Koglin N, Klopf L et al (2018) Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean–island magmatism. Int J Earth Sci 107:359–377. https://doi.org/10.1007/s00531-017-1497-2

    Article  Google Scholar 

  • Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Janoušek V, Farrow C, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Article  Google Scholar 

  • Jegouzo P, Peucat J-J, Audren C (1986) Caracterisation et signification geodynamique des orthogneiss calco-alcalins d’age ordovicien de Bretagne meridionale. Bull Société Géologique Fr II:839–848. https://doi.org/10.2113/gssgfbull.II.5.839

    Article  Google Scholar 

  • Jones RE, Kirstein LA, Kasemann SA et al (2015) Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon. Geochim Cosmochim Acta 164:386–402. https://doi.org/10.1016/j.gca.2015.05.007

    Article  Google Scholar 

  • Jung S, Masberg P, Mihm D, Hoernes S (2009) Partial melting of diverse crustal sources—Constraints from Sr–Nd–O isotope compositions of quartz diorite–granodiorite–leucogranite associations (Kaoko Belt, Namibia). Lithos 111:236–251. https://doi.org/10.1016/j.lithos.2008.10.010

    Article  Google Scholar 

  • Kirkland CL, Smithies RH, Taylor RJM et al (2015) Zircon Th/U ratios in magmatic environs. Lithos 212–215:397–414. https://doi.org/10.1016/j.lithos.2014.11.021

    Article  Google Scholar 

  • Kirsch M, Paterson SR, Wobbe F et al (2016) Temporal histories of Cordilleran continental arcs: testing models for magmatic episodicity. Am Mineral 101:2133–2154. https://doi.org/10.2138/am-2016-5718

    Article  Google Scholar 

  • Koglin N, Zeh A, Franz G et al (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Res 55:135–152. https://doi.org/10.1016/j.gr.2017.11.001

    Article  Google Scholar 

  • Koppers AA (2002) ArArCALC—software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Article  Google Scholar 

  • Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc 171:83–95. https://doi.org/10.1144/jgs2013-059

    Article  Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geol Landesamts 1.

  • Kröner A, Jaeckel P, Opletal M (1994) Pb-Pb and U-Pb zircon ages for orthogneisses from eastern Bohemia: further evidence for a major Cambro-Ordovician magmatic event. J Czech Geol Soc 39:61

    Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Lardeaux J, Dufour E (1987) Superposed strain patterns in the Variscan Chain—example in the northern Monts du Lyonnais area (French Massif-Central). Comptes Rendus Acad Sci Ser II 305:61–64

    Google Scholar 

  • Lardeaux JM, Schulmann K, Faure M et al (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geol Soc Lond Spec Publ 405:7–44. https://doi.org/10.1144/SP405.14

    Article  Google Scholar 

  • Lasnier B, Leyreloup A, Marchand J (1973) Découverte d’un granite ≪ charnockitique ≫ au sein de ≪ gneiss œillés ≫ Perspectives nouvelles sur l’origine de certaines leptynites du Massif Armoricain Méridional (France). Contrib Mineral Petrol 41:131–144. https://doi.org/10.1007/BF00375038

    Article  Google Scholar 

  • Laverne C, Bronner G, Bellot J-P (1997) Did the ultrabasites from the Hercynian Maures massif (Var, France) originate in a fore-arc basin? Petrological and mineralogical evidence. Comptes Rendus Acad Sci Ser IIA Earth Planet Sci 10:765–771

    Google Scholar 

  • Ledru P, Lardeaux JM, Santallier D et al (1989) Ou sont les nappes dans le massif central francais? Bull Société Géologique Fr. https://doi.org/10.2113/gssgfbull.V.3.605

    Article  Google Scholar 

  • Lee J-Y, Marti K, Severinghaus JP et al (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512

    Article  Google Scholar 

  • Liégeois J-P, Abdelsalam MG, Ennih N, Ouabadi A (2013) Metacraton: nature, genesis and behavior. Gondwana Res 23:220–237. https://doi.org/10.1016/j.gr.2012.02.016

    Article  Google Scholar 

  • Linnemann U (2007) Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development. Geol Soc Lond Spec Publ 286:35. https://doi.org/10.1144/SP286.4

    Article  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M et al (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131. https://doi.org/10.1144/GSL.SP.2000.179.01.10

    Article  Google Scholar 

  • Linnemann U, Pereira F, Jeffries TE et al (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43. https://doi.org/10.1016/j.tecto.2008.05.002

    Article  Google Scholar 

  • Linnemann U, Ouzegane K, Drareni A et al (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb–LA-ICP-MS detrital zircon ages. Lithos 123:188–203

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278. https://doi.org/10.1016/j.precamres.2013.08.007

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geological Society of America

  • Ludwig K (2011) User’s manual for Isoplot 4.15: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, USA concentrations: Loess and the upper continental crust. Geochem Geophys Geosystems 2.

  • Maluski H (1971) Etude 87Rb-87Sr des minéraux des gneiss de Bormes (Maures, France). Comptes Rendus L’académie Sci Paris 273:1470–1473

    Google Scholar 

  • Maluski H, Allegre C (1970) Problème de la datation par le couple 87 Rb–86 Sr des socles gneissiques: exemple des gneiss de Bormes (massif hercynien des Maures, France). Comptes Rendus Académie Sci Sér IIA 270:18–21

    Google Scholar 

  • Maluski H, Gueirard S (1978) Mise en évidence par la méthode 39Ar/40Ar de l’âge à 580 Ma du granite de Barral (Massif des Maures, Var, France). Comptes Rendus L’académie Sci Paris 287:195–198

    Google Scholar 

  • Margalef A, Castiñeiras P, Casas JM et al (2016) Detrital zircons from the Ordovician rocks of the Pyrenees: geochronological constraints and provenance. Tectonophysics 681:124–134

    Article  Google Scholar 

  • Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247. https://doi.org/10.1111/j.1365-3121.2011.01005.x

    Article  Google Scholar 

  • Martínez Catalán JR, Arenas R, García FD et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. 4-D framework of continental crust. Geological Society of America Memoir Boulder, Colorado, pp 403–423

    Chapter  Google Scholar 

  • Martínez Catalán JR, Arenas R, Abati J et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. Comptes Rendus Geosci 341:114–126. https://doi.org/10.1016/j.crte.2008.11.004

    Article  Google Scholar 

  • Martínez Catalán JR, Collett S, Schulmann K et al (2019) Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif. Int J Earth Sci, European Variscan belt. https://doi.org/10.1007/s00531-019-01800-z

    Book  Google Scholar 

  • Martínez Catalán JR, Schulmann K, Ghienne J-F (2021) The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci Rev 220:103700. https://doi.org/10.1016/j.earscirev.2021.103700

    Article  Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374. https://doi.org/10.1016/0040-1951(86)90237-4

    Article  Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128. https://doi.org/10.1046/j.1365-3121.2001.00327.x

    Article  Google Scholar 

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50(1):89–118

    Google Scholar 

  • Mazur S, Kröner A, Szczepański J et al (2010) Single zircon U-Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geol Mag 147:508–526. https://doi.org/10.1017/S001675680999080X

    Article  Google Scholar 

  • McKay MP, Jackson WT, Hessler AM (2018) Tectonic stress regime recorded by zircon Th/U. Gondwana Res 57:1–9. https://doi.org/10.1016/j.gr.2018.01.004

    Article  Google Scholar 

  • Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25. https://doi.org/10.1016/j.gr.2009.05.007

    Article  Google Scholar 

  • Merdith AS, Williams SE, Collins AS et al (2021) Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci Rev 214:103477. https://doi.org/10.1016/j.earscirev.2020.103477

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF et al (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019

    Article  Google Scholar 

  • Mingram B, Kröner A, Hegner E, Krentz O (2004) Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. Int J Earth Sci 93:706–727. https://doi.org/10.1007/s00531-004-0414-7

    Article  Google Scholar 

  • Mlčoch B, Schulmann K (1992) Superposition of Variscan ductile shear deformation on pre-Variscan mantled gneiss structure (Catherine dome, Erzgebirge, Bohemian massif). Geol Rundsch 81:501–513. https://doi.org/10.1007/BF01828612

    Article  Google Scholar 

  • Morillon A-C, Féraud G, Sosson M et al (2000) Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321:103–126

    Article  Google Scholar 

  • Moussavou M (1998) Contribution à l’histoire thermo-tectonique varisque du massif des Maures, par la typologie du zircon et la géochronologie U/Pb sur minéraux accessoires (Var, France). Université de Montpellier 2

  • Moyen J-F, Laurent O, Chelle-Michou C et al (2017) Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177. https://doi.org/10.1016/j.lithos.2016.09.018

    Article  Google Scholar 

  • Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth Planet Sci Lett 224:275–293

    Article  Google Scholar 

  • Murphy JB, Gutierrez-Alonso G, Nance RD et al (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

    Article  Google Scholar 

  • Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31. https://doi.org/10.1016/S0040-1951(02)00187-7

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. https://doi.org/10.1016/j.gr.2009.08.001

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135. https://doi.org/10.1016/j.gsf.2011.11.008

    Article  Google Scholar 

  • Oberc-Dziedzic T, Kryza R, Pin C et al (2009) The Orthogneiss and Schist Complex of the Karkonosze-Izera Massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24

    Google Scholar 

  • Okrusch M, Richter P (1986) Orthogneisses of the Spessart crystalline complex, Northwest Bavaria: indicators of the geotectonic environment? Geol Rundsch 75:555–568. https://doi.org/10.1007/BF01820631

    Article  Google Scholar 

  • Oliot E, Melleton J, Schneider J et al (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull Société Géologique Fr 186:145–169

    Article  Google Scholar 

  • Padel M, Clausen S, Álvaro JJ, Casas JM (2018) Review of the Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geol Acta 16:339–355

    Google Scholar 

  • Paquette J-L, Ballèvre M, Peucat J-J, Cornen G (2017) From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294–295:418–437. https://doi.org/10.1016/j.lithos.2017.10.005

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC et al (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002618

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pearce JA (1996) A user’s guide to basalt discrimination diagrams. Trace Elem Geochem Volcan Rocks Appl Massive Sulphide Explor Geol Assoc Can Short Course Notes 12:113

  • Peccerillo A, Taylor S (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472. https://doi.org/10.1007/BF00344081

    Article  Google Scholar 

  • Pitcher WS (1997) The nature and origin of granite. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Quesada C, Bellido F, Dallmeyer RD et al (1991) Terranes within the Iberian Massif: correlations with West African Sequences. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-atlantic correlatives. Springer, Berlin, Heidelberg, pp 267–293

    Chapter  Google Scholar 

  • Roger F, Respaut J, Brunel M et al (2004) U-Pb dating of Augen orthogneisses from the axial zone of the Montague Noire (Southern of Massif Central): new witness of Ordovician magmatism into the Variscan Belt. Comptes Rendus Géoscience 336:19–28

    Article  Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271–285

    Article  Google Scholar 

  • Rolland Y, Corsini M, Demoux A (2009) Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along a transpressional margin. Bull Société Géologique Fr 180:217–230. https://doi.org/10.2113/gssgfbull.180.3.217

    Article  Google Scholar 

  • Rossi P, Oggiano G, Cocherie A (2009) A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. Comptes Rendus Geosci 341:224–238. https://doi.org/10.1016/j.crte.2008.12.005

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138. https://doi.org/10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642

    Article  Google Scholar 

  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux J-M (2014) Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France). Geol Soc Lond Spec Publ 405:313–331. https://doi.org/10.1144/SP405.4

    Article  Google Scholar 

  • Schulmann K (1990) Fabric and kinematic study of the Bíteš orthogneiss (southwestern Moravia): result of large-scale northeastward shearing parallel to the Moldanubian/Moravian boundary. Tectonophysics 177:229–244. https://doi.org/10.1016/0040-1951(90)90283-E

    Article  Google Scholar 

  • Schulmann K, Ledru P, Autran A et al (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92. https://doi.org/10.1007/BF01828768

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V et al (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci 341:266–286. https://doi.org/10.1016/j.crte.2008.12.006

    Article  Google Scholar 

  • Schulmann K, Catalán JRM, Lardeaux JM et al (2014) The Variscan orogeny: extent, timescale and the formation of the European crust. Geol Soc Lond Spec Publ 405:1–6. https://doi.org/10.1144/SP405.15

    Article  Google Scholar 

  • Seyler M (1986) Petrology and genesis of Hercynian alkaline orthogneisses from Provence, France. J Petrol 27:1229–1251

    Article  Google Scholar 

  • Shand SJ (1943) Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley & sons, New York

    Google Scholar 

  • Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, Cambridge

    Google Scholar 

  • Siebel W, Raschka H, Irber W et al (1997) Early palaeozoic acid magmatism in the Saxothuringian Belt: new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the fichtelgebirge, SE Germany. J Petrol 38:203–230. https://doi.org/10.1093/petroj/38.2.203

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ et al (2008) Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Soejono I, Janoušek V, Žáčková E et al (2017) Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J Earth Sci 106:2109–2129. https://doi.org/10.1007/s00531-016-1416-y

    Article  Google Scholar 

  • Stampfli GM, Hochard C, Vérard C et al (2013) The formation of Pangea. Tectonophysics 593:1–19. https://doi.org/10.1016/j.tecto.2013.02.037

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stephan T, Kroner U, Romer RL (2019a) The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geol Mag 156:281–307. https://doi.org/10.1017/S0016756818000031

    Article  Google Scholar 

  • Stephan T, Kroner U, Romer RL, Rösel D (2019b) From a bipartite Gondwanan shelf to an arcuate Variscan belt: the early Paleozoic evolution of northern Peri-Gondwana. Earth Sci Rev 192:491–512. https://doi.org/10.1016/j.earscirev.2019.03.012

    Article  Google Scholar 

  • Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Geol Fören Stockh Förh 48:607–609

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44. https://doi.org/10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Tabaud AS, Štípská P, Mazur S et al (2021) Evolution of a Cambro-Ordovician active margin in northern Gondwana: Geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondwana Res 90:1–26. https://doi.org/10.1016/j.gr.2020.10.011

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Teipel U, Eichhorn R, Loth G et al (2004) U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801. https://doi.org/10.1007/s00531-004-0419-2

    Article  Google Scholar 

  • Tichomirowa M, Berger H-J, Koch EA et al (2001) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332. https://doi.org/10.1016/S0024-4937(00)00066-9

    Article  Google Scholar 

  • Tichomirowa M, Sergeev S, Berger H-J, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396

    Article  Google Scholar 

  • Tindle AG, Pearce JA (1983) Assimilation and partial melting of continental crust: evidence from the mineralogy and geochemistry of autoliths and xenoliths. Lithos 16:185–202. https://doi.org/10.1016/0024-4937(83)90023-3

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2011) The Palaeozoic palaeogeography of central Gondwana. Geol Soc Lond Spec Publ 357:137–166

    Article  Google Scholar 

  • Torsvik TH, Müller RD, Van der Voo R et al (2008) Global plate motion frames: toward a unified model. Rev Geophys. https://doi.org/10.1029/2007RG000227

    Article  Google Scholar 

  • Toutin-Morin N, Bonijoly D, Brocard C, et al (1993) Enregistrement sédimentaire de l’évolution post-hercynienne en bordure des Maures et du Tanneron, du carbonifère supérieur à l’Actuel. Géologie Fr 3–22

  • Turner G, Huneke J, Podosek F, Wasserburg G (1971) 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet Sci Lett 12:19–35

    Article  Google Scholar 

  • Vauchez A, Bufalo M (1985) La limite Maures occidentales-Maures orientales (Var, France): un décrochement ductile senestre majeur entre deux provinces structurales très contrastées. Comptes Rendus Académie Sci Sér 2 Mécanique Phys Chim Sci Univers Sci Terre 301:1059–1062

    Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194

    Article  Google Scholar 

  • Vialette Y, Casquet C, Fúster J, et al (1987) Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jahrb Für Mineral Monatshefte 465–479

  • Villaseca C, Merino Martínez E, Orejana D et al (2016) Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res 34:60–83. https://doi.org/10.1016/j.gr.2016.03.004

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F et al (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gondwana Res 22:855–865

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Winter J (2001) Introduction to igneous and metamorphic petrology. Prentice-Hall Inc., Saddle River NJ

    Google Scholar 

  • Yakymchuk C, Kirkland CL, Clark C (2018) Th/U ratios in metamorphic zircon. J Metamorph Geol 36:715–737. https://doi.org/10.1111/jmg.12307

    Article  Google Scholar 

  • Žák J, Sláma J (2018) How far did the Cadomian ʽterranesʼ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. Int Geol Rev 60:319–338. https://doi.org/10.1080/00206814.2017.1334599

    Article  Google Scholar 

  • Zieger J, Linnemann U, Hofmann M et al (2018) A new U-Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. Int J Earth Sci 107:933–953. https://doi.org/10.1007/s00531-017-1511-8

    Article  Google Scholar 

  • Zurbriggen R (2015) Ordovician orogeny in the Alps: a reappraisal. Int J Earth Sci 104:335–350. https://doi.org/10.1007/s00531-014-1090-x

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the Research Project no. 310560 which is part of the Strategic Research Plan of the Czech Geological Survey (DKRVO/ČGS 2018–2022). We are grateful to M. Poujol (Geosciences Rennes, France), N. Novotná and J. Míková (Czech Geological Survey, Prague) for the LA–ICP–MS analyses. We also thank M. Štrba for mineral separation. This work was improved following constructive comments by Stanislaw Mazur and an anonymous reviewer. Ulrich Riller is thanked for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tabaud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 147 KB)

Supplementary file2 (XLSX 76 KB)

Appendices

Appendix 1

LA–ICP–MS analytical methods

LA‒ICP‒MS U‒Pb analyses on zircons were conducted at the Czech Geological Survey, Prague, and at the GeOHeLiS Platform, University of Rennes, France. Zircons were analysed using an Analyte Excite 193 nm excimer laser ablation system (LA; Proton Machines), equipped with a two-volume HelEx ablation cell, in tandem with an Agilent 7900× (Prague) or an Agilent 7700× (Rennes) ICPMS (Agilent Technologies Inc., Santa Clara, USA). Samples were ablated in He atmosphere (0.8 l min–1) at a pulse repetition rate of 5 Hz using a spot size of 25 μm and laser fluence of 7.59 J cm–2. Each measurement consisted of 20 s of blank acquisition followed by ablation of the sample for a further 40 s of signal collection at masses 202, 204, 206, 207, 208, 232 and 238 using the SEM detector, with one point per mass peak and the respective dwell times of 10, 10, 15, 30, 20, 10 and 15 ms per mass (total sweep time of 0.134 s). Instrumental drift was monitored by repeat measurements of 91,500 reference zircon (Wiedenbeck et al. 1995) after every 20 unknowns. Data deconvolution using Iolite software followed the method described by Paton et al. (2010), including an ‘on peak’ gas blank subtraction followed by correction for laser-induced elemental fractionation (LIEF) by comparison with the behaviour of the 91,500 reference zircon (Wiedenbeck et al. 1995) which yielded in this study a Concordia age of 1062.9 ± 2.1 Ma. In addition, zircon reference samples GJ-1 (~ 609 Ma, Jackson et al. 2004) and Plešovice (337 Ma, Sláma et al. 2008) were analysed periodically during this study and yielded Concordia ages of 604 ± 2.0 Ma (Rennes); 606.6 ± 3.2 Ma (Prague) and 340 ± 3 Ma (Rennes); 337.7 ± 1.2 Ma (Prague) (2σ), respectively.

Appendix 2

40Ar–39Ar method

The argon isotopic interferences on K and Ca were determined by the irradiation of KF and CaF2 pure salts from which the following correction factors were obtained: (40Ar/39Ar)K = 2.97 × 10–2 ± 10–3 at 1σ, (38Ar/39Ar)K = 1.24 × 10–2 ± 5 × 10–4 at 1σ, (39Ar/37Ar)Ca = 7.27 × 10–4 ± 4 × 10–5 at 1σ, and (36Ar/37Ar)Ca = 2.82 × 10–4 ± 3 × 10–5 at 1σ. 40Ar/39Ar step heating analyses were performed at Geoazur Nice (France) using a CO2 Synrad 48-5 laser. Isotopic measurements were performed by a VG 3600 mass spectrometer working with a Daly detector system and connected to a stainless-steel purification line with two GP50 Al–Zr Getters operating at 400 °C with an (LN2 + Cl2CH2) cold trap. The mass spectrometer is a 120° M.A.S.S.E. flight tube fitted to a Baur-Signer GS-98 source and a Balzers SEV217 electron multiplier. The blanks of the extraction and purification laser system were measured every third step and subtracted from each argon isotope from the subsequent gas fraction. Typical blank values were in the range of 6–18, 0.3–2.0, 0.4–1.2 and 0.6–1.4 × 10–13 ccSTP for the mass 40, 39, 37 and 36, respectively. The mass-discrimination was monitored by regularly analysing the air pipette volume. Blanks were monitored after every three analyses. All parameters and relative abundance values are provided in supplementary materials and have been corrected for blanks, mass discrimination, and radioactive decay. Atmospheric 40Ar was estimated using a value of the initial 40Ar/36Ar of 298.56 (Lee et al. 2006). Our criteria for the determination of a plateau are as follows: a plateau must include at least 70% of 39Ar released, over a minimum of three consecutive steps agreeing at a 95% confidence level. Plateau ages are given at the 2σ error level, and the plateau age uncertainties include analytical and J value errors. All the errors on the inverse isochron, total fusion ages, and initial 40Ar/36Ar ratios are quoted at the 2σ error.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabaud, A.S., Lardeaux, J.M. & Corsini, M. A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin. Int J Earth Sci (Geol Rundsch) 112, 925–950 (2023). https://doi.org/10.1007/s00531-022-02277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02277-z

Keywords

Navigation