Skip to main content
Log in

3D thermal and rheological models of the southern Río de la Plata Craton (Argentina): implications for the initial stage of the Colorado rifting and the evolution of Sierras Australes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We present 3D thermal and rheological models of a key intra-plate locality of South America: the southernmost limit of the Río de la Plata Craton area (which encompasses the Claromecó Basin, the Sierras Australes, and the Colorado Basin). Both models were calculated on the basis of a previously published 3D lithospheric scale density model, after the population of the different units with thermal and rheological properties. Firstly, the steady-state conductive thermal field was modelled using different thermal properties in accordance with the assumed lithological composition of the units. Moving forward, the strength distribution was calculated considering the resulting thermal field and published rheological properties for common rock types as input for the different layers that compose the 3D density configuration of the area. Our main results suggest that the thickness and composition of the crust exert a first-order control on the present-day thermal field of the area and, subsequently, on the lithospheric strength. Particularly, we identified a rheologically weak lithospheric zone that coincides with previously proposed inherited Paleozoic structures of Gondwana. This inherited lithospheric fabric could have controlled the opening of the Colorado Rift Basin during the early Late Jurassic. In that sense, the present day high strength of the Rio Negro and Colorado transfer zones associated with the mafic infill of Colorado rifting in the Mesozoic suggests that the weak zones should have necessarily been developed during (at least) Paleozoic to early Mesozoic times. This supports the hypothesis that the reactivation and interaction of the latter with the Gondwanic weak lithospheric zone could have deformed and uplifted the Sierras Australes during the Gondwanides Orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achilli S, Kostadinoff J (1985) Determinación de la velocidad de propagación de las ondas sísmicas “P” y módulos de elasticidad en rocas del Sistema de Ventania. Primeras Jornadas Bonaerenses Actas, pp 985–996

  • Afonso JC, Ranalli G (2004) Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete? Tectonophysics 394:221–232. https://doi.org/10.1016/j.tecto.2004.08.006

    Article  Google Scholar 

  • Allen PA, Allen JR (2013) Basin Analysis: Principles and Applications to petroleum play assessment. Wiley-Blackwell, New Jersey

    Google Scholar 

  • Andreis RR, Japas MS (2006) Cuencas Sauce Grande y Colorado. Léxico Estratigráfico de la Argentina. Vol. 2 Pérmian (PhD Thesis), pp 1–62

  • Anikiev D, Cacace M, Bott J, Gomez Dacal ML, Scheck-Wenderoth M (2020) Influence of lithosphere rheology on seismicity in an intracontinental rift: the case of the Rhine Graben. Front Earth Sci. https://doi.org/10.3389/feart.2020.592561

    Article  Google Scholar 

  • Arzadún G, Tomezzoli RN, Cesaretti NN (2016) Tectonic insight based on anisotropy of magnetic susceptibility and compaction studies in the Sierras Australes thrust and fold belt (southwest Gondwana boundary, Argentina). Tectonics 35:1015–1031. https://doi.org/10.1002/2015TC003976

    Article  Google Scholar 

  • Assumpçao M, Schimmel M, Escalante C, Barbosa JR, Rocha M, Barros LV (2004) Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots. Geophys J Int 159:390–399. https://doi.org/10.1111/j.1365-246X.2004.02357.x

    Article  Google Scholar 

  • Austin JA Jr, Uchupi E (1982) Continental-oceanic crustal transition off Southwest Africa. AAPG Bull 66(9):1328–1347

    Google Scholar 

  • Autin J, Scheck-wenderoth M, Loegering MJ, Anka Z, Vallejo E, Rodriguez JF, Dominguez F (2013) Tectonophysics Colorado Basin 3D structure and evolution, Argentine passive margin. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.05.019

    Article  Google Scholar 

  • Autin J, Scheck-Wenderoth M, Götze H-J, Reichert C, Marchal D (2016) Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin. Tectonophysics 676:198–210. https://doi.org/10.1016/j.tecto.2015.11.023

    Article  Google Scholar 

  • Ballivián Justiniano CA, Basei MAS, Sato AM, González PD, Benítez ME, Lanfranchini ME (2020) The neoproterozoic basement of the Sauce Chico Inlier (Ventania System): geochemistry and U-Pb geochronology of igneous rocks with African lineage in central-eastern Argentina. J S Am Earth Sci 98:102391. https://doi.org/10.1016/j.jsames.2019.102391

    Article  Google Scholar 

  • Baxter P, Smith EGC (2020) The contemporary strain rate field in Uruguay and surrounding region and possible implications for seismic hazard. J S Am Earth Sci 103:102748. https://doi.org/10.1016/j.jsames.2020.102748

    Article  Google Scholar 

  • Bayer U, Scheck-Wenderoth M, Koehler M (1997) Modeling of the 3D thermal field in the northeast German basin. Geol Rundschau 86:241–251

    Article  Google Scholar 

  • Bercovici D (1998) Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication. Earth Planet Sci Lett 154:139–151

    Article  Google Scholar 

  • Bossi J, Cingolani CA (2009) Extension and general evolution of the Río de la Plata Craton. Dev Precambrian Geol 16:73–85

    Article  Google Scholar 

  • Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res Solid Earth 85(B11):6248–6252

    Article  Google Scholar 

  • Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms5014

    Article  Google Scholar 

  • Brune S, Heine C, Glift PD, Pérez-Gussinyé M (2016) Rifted margin architecture and crustal rheology: reviewing Iberia-Newofundland, Central South Atlantic, and South China Sea. Mar Pet Geol 79:257–281

    Article  Google Scholar 

  • Buggisch WE (1987) Stratigraphy and very low grade metamorphism of the Sierras Australes de la Provincia de Buenos Aires (Argentina) and implications in Gondwana correlation. Zent Mineral Geol Paläontol 1(819):837

    Google Scholar 

  • Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008

    Article  Google Scholar 

  • Burov EB, Watts AB (2006) The long-term strength of continental lithosphere: “jelly sanwich” or “crème brûlée”? GSA Today 16(1):4–10

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks, pure and applied geophysics. Pageoph 116:615–626. https://doi.org/10.1007/bf00876528

    Article  Google Scholar 

  • Cacace M, Jacquey AB (2017) Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth 8:921–941. https://doi.org/10.5194/se-8-921-2017

    Article  Google Scholar 

  • Cacace M, Scheck-Wenderoth M (2016) Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. J Geophys Res Solid Earth 121:3742–3761. https://doi.org/10.1002/2015JB012682

    Article  Google Scholar 

  • Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136:27–63. https://doi.org/10.1016/0040-1951(87)90333-7

    Article  Google Scholar 

  • Chauvet F, Sapin F, Geoffroy L, Ringenbach J-C, Ferry J-N (2020) Conjugate volcanic passive margins in the austral segment of the South Atlantic: architecture and development. Earth-Sci Rev 212:103461. https://doi.org/10.1016/j.earscirev.2020.103461

    Article  Google Scholar 

  • Chen W, Molnar P (1983) Focal depths of intracontinental and intraplate earthquakes and their implications for the mechanical properties of the lithosphere. J Geophys Res Solid Earth 88(5):4183–4214. https://doi.org/10.1029/JB088iB05p04183

    Article  Google Scholar 

  • Chernicoff CJ, Zappettini EO, Peroni J (2014) The Rhyacian El Cortijo suture zone: aeromagnetic signature and insights for the geodynamic evolution of the southwestern Rio de la Plata craton. Argent Geosci Front 5:43–52. https://doi.org/10.1016/j.gsf.2013.04.004

    Article  Google Scholar 

  • Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876

    Article  Google Scholar 

  • Christiansen RO, Ballivián Justiniano CA, Oriolo S, Gianni GM, García HPA, Martinez MP, Kostadinoff J (2021) Crustal architecture and tectonic evolution of the southernmost Río de la Plata Craton and its Neoproterozoic-Paleozoic sedimentary cover: insights from 3D litho-constrained stochastic inversion models. Precambrian Res 362:106307. https://doi.org/10.1016/j.precamres.2021.106307

    Article  Google Scholar 

  • Cingolani CA (2011) The Tandilia system of Argentina as a southern extension of the Río de la Plata craton: an overview. Int J Earth Sci 100:221–242. https://doi.org/10.1007/s00531-010-0611-5

    Article  Google Scholar 

  • Cingolani CA, Dalla Salda LH (2000) Buenos Aires cratonic region. In: Cordani U, Milani E, Thomaz Filho A, Campos D (eds) Tectonic evolution of South America. Proceedings of 31st International Geological Congress, Río Janeiro, pp 139–146

  • Clavijo EG, Martínez Catalán JR (2002) Stratigraphic record of preorogenic to synorogenic sedimentation, and tectonic evolution of imbricate units in the Alcañices synform (northwestern Iberian Massif). Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement. Geological Society of America, Washington, pp 17–35. https://doi.org/10.1130/0-8137-2364-7.17

    Chapter  Google Scholar 

  • Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Hardebol N, Dèzes P (2005) Intraplate deformation and 3D rheological structure of the Rhine Rift System and adjacent areas of the northern Alpine foreland. Int J Earth Sci 94:758–778. https://doi.org/10.1007/s00531-005-0502-3

    Article  Google Scholar 

  • Cloetingh S, Beekman F, Ziegler PA, Van Wees JD, Sokoutis D (2008) Post-rift compressional reactivation potential of passive margins and extensional basins. Geol Soc Spec Publ 306:27–70. https://doi.org/10.1144/SP306.2

    Article  Google Scholar 

  • Côté J, Konrad JM (2005) Thermal conductivity of base-course materials. Can Geotech J 42(1):61–78

    Article  Google Scholar 

  • Dalla Salda LH, Bossi J, Cingolani CA (1988) The Rio de la Plata cratonic region of southwestern Gondwana. Episodes 11(4):263–269

    Article  Google Scholar 

  • Dalla Salda LH, Spalletti L, Poiré D, De Barrio R, Echeveste H (2006) Tandilia. Temas De Geol Argent Ser Correl Geol 21(1):17–46

    Google Scholar 

  • Díez Fernández R, Foster DA, Gómez Barreiro J, Alonso-García M (2013) Rheological control on the tectonic evolution of a continental suture zone: the Variscan example from NW Iberia (Spain). Int J Earth Sci 102:1305–1319. https://doi.org/10.1007/s00531-013-0885-5

    Article  Google Scholar 

  • Dominguez F, Marchal D, Sigismondi M, Espejón C, Vallejo E (2011) Caracterizacion de Dominios Estructurales e Influencia de Estructuras Preexistentes en Hemigrábenes de Rift en el Sector Centro-Norte de la Plataforma Contiental Argentina. XVIII Congress Geologica Argentino, pp 2

  • Doser DI, Kanamori H (1986) Depth of seismicity in the Imperial Valley Region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. J Geophys Res Solid Earth 91(B1):675–688

    Article  Google Scholar 

  • Dressel I, Scheck-wenderoth M, Cacace M (2017) Tectonophysics backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics 716:168–181. https://doi.org/10.1016/j.tecto.2016.08.007

    Article  Google Scholar 

  • Eldholm O, Gladczenko TP, Skogseid J, Planke S (2000) Atlantic volcanic margins: a comparative study. Geol Soc Lond Spec Publ 167:411–428

    Article  Google Scholar 

  • Faulkner P (2000) Tectonic and thermal evolution of South Atlantic marginal basins. PhD Thesis University: University of Cambridge

  • Fowler CMR (1990) The solid earth. An introduction to global geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864. https://doi.org/10.1111/j.1365-246X.2006.02907.x

    Article  Google Scholar 

  • Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244:46–67. https://doi.org/10.1016/j.margeo.2007.06.009

    Article  Google Scholar 

  • Fryklund B, Marshall A, Stevens J (1996) Cuenca del Colorado. Geología y recursos naturales de la plataforma continental Argentina. Chapter 8, pp 135–158

  • Gac S, Klitzke P, Minakov A, Faleide JI, Scheck-Wenderoth M (2016) Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics 691:120–132. https://doi.org/10.1016/j.tecto.2016.04.028

    Article  Google Scholar 

  • Goetze C, Evans B (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys J Int 59(3):463–478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x

  • Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia. Argent Gondwana Res 14:429–450. https://doi.org/10.1016/j.gr.2008.04.005

    Article  Google Scholar 

  • Harrington HJ (1947) Explicción de las Hojas Geológicas 33m y 34m, Sierra de Curamalal y de la Ventana, Provincia de Buenos Aires. Report to: Dirección de Minas y Geología (Servicio geológico minero argentino - SEGEMAR). Vol 61

  • Harrington HJ (1970) Las Sierras Australes de la Provincia de Buenos Aires, República Argentina: cadena aulacogénica. Rev Asoc Geol Argent 25(2):151–181

    Google Scholar 

  • Hartmann LA, Leite JAD, Mc Naughton NJ, Santos JOS (1999) Deepest exposed crust of Brazil–SHRIMP establishes three events. Geol 27:947–950

  • Hasterok D, Webb J (2017) On the radiogenic heat production of igneous rocks. Geosci Front 8(5):919–940

    Article  Google Scholar 

  • Hasterok D, Gard M, Webb J (2018) On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geosci Front 9:1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012

    Article  Google Scholar 

  • Heit B, Sodoudi F, Yuan X, Bianchi M, Kind R (2007) An S receiver function analysis of the lithospheric structure in South America. Geophys Res Lett 34:L14307. https://doi.org/10.1029/2007GL030317

    Article  Google Scholar 

  • Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Gonçalves de Souza H (1999) The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Mar Pet Geol 16:1–25

    Article  Google Scholar 

  • Holdsworth RE, Butler CA, Roberts AM (1997) The recognition of reactivation during continental deformation. J Geol Soc 154:73–78

    Article  Google Scholar 

  • Ito K (1990) Regional variations of the cutoff depth of seismicity in the crust and their relation to heat flow and large inland-earthquakes. J Phys Earth 38(3):223–250

    Article  Google Scholar 

  • Jackson J (2002) Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today 12(9):4–9

    Article  Google Scholar 

  • Jacques JM (2003) A tectonostratigraphic synthesis of the Sub-Andean basins: implications for the geotectonic segmentation of the Andean Belt. J Geol Soc Lond 160:687–701. https://doi.org/10.1144/0016-764902-088

    Article  Google Scholar 

  • Jacquey AB, Cacace M (2017) GOLEM, a MOOSE-based application v.1.0. Zenodo. https://doi.org/10.5281/zenodo.999401

  • Juan RC, de Jager J, Russell J, Gebhard I (1996) Flanco norte de la Cuenca del Colorado. Geología y recursos naturales de la plataforma continental argentina. Chapter 7, pp 117–133

  • Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science (80–) 260:771–778. https://doi.org/10.1126/science.260.5109.771

    Article  Google Scholar 

  • Kilmurray J (1968) Petrología de las rocas ígneas de las Sierras Australes de la Provincia de Buenos Aires. Rev Museo De La Plata Geol 6:155–188

    Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Article  Google Scholar 

  • Lesta P, Sylwan C (2005) Cuenca de Claromecó Conference name: 6° Congreso de Exploración y Desarrollo de Hidrocarburos. Vol 10. pp 217–231

  • Loegering MJ, Anka Z, Autin J, Primio R, Marchal D, Rodriguez JF, Franke D, Vallejo E (2013) Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics 604:245–263. https://doi.org/10.1016/j.tecto.2013.02.008

    Article  Google Scholar 

  • Lopez-Gamundi OR, Buatois LA (2010) Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America

  • López-Gamundí OR, Rossello EA (1993) Devonian-Carboniferous unconformity in Argentina and its relation to the Eo-Hercynian orogeny in southern South America. Geol Rundschau 82:136–147

    Article  Google Scholar 

  • Lovecchio JP, Rohais S, Joseph P, Bolatti ND, Kress PR, Gerster R, Ramos VA (2018) Multistage rifting evolution of the Colorado basin (offshore Argentina): evidence for extensional settings prior to the South Atlantic opening. Terra Nova 30(5):359–368. https://doi.org/10.1111/ter.12351

    Article  Google Scholar 

  • Lovecchio JP, Rohais S, Joseph P, Bolatti ND, Ramos VA (2020) Mesozoic rifting evolution of SW Gondwana: a poly-phased, subduction-related, extensional history responsible for basin formation along the Argentinean Atlantic margin. Earth-Sci Rev 203:103138. https://doi.org/10.1016/j.earscirev.2020.103138

    Article  Google Scholar 

  • Marchese HG, Di Paola E (1975a) Reinterpretación estratigráfica de la perforación de Punta Mogotes I, Provincia de Buenos Aires. Rev De La Asoc Geol Argent 30(1):44–52

    Google Scholar 

  • Marchese HG, Di Paola E (1975b) Miogeosinclinal tandil. Rev De La Asoc Geol Argent 30(2):161–179

    Google Scholar 

  • Massabie AC, Rossello EA (1984) La discordancia pre-formación Sauce Grande y su entorno estratigráfico, Sierras Australes de la provincia de Buenos Aires. IX Congr Geol Argent S.c Bariloche Actas I:337–352

    Google Scholar 

  • Max MD, Ghidella M, Kovacs L, Paterlini M, Valladares JA (1999) Geology of the Argentine continental shelf and margin from aeromagnetic survey. Mar Pet Geol 16:41–64. https://doi.org/10.1016/S0264-8172(98)00063-4

    Article  Google Scholar 

  • Maystrenko YP, Scheck-Wenderoth M, Hartwig A, Anka Z, Watts AB, Hirsch KK, Fishwick S (2013) Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics 604:104–121. https://doi.org/10.1016/j.tecto.2013.04.014

    Article  Google Scholar 

  • McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349. https://doi.org/10.1016/j.epsl.2005.02.005

    Article  Google Scholar 

  • Moisio K, Kaikkonen P, Beekman F (2000) Rheological structure and dynamical response of the DSS profile BALTIC in the SE Fennoscandian shield. Tectonophysics 320:175–194

    Article  Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  • Oriolo S, Oyhantçabal P, Wemmer K, Basei MAS, Benowitz J, Pfänder J, Hannich F, Siegesmund S (2016) Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: implications for the amalgamation of western Gondwana during the Neoproterozoic Brasiliano-Pan-African Orogeny. Tectonics 35:754–771. https://doi.org/10.1002/2015TC004052

    Article  Google Scholar 

  • Oyhantçabal P, Siegesmund S, Wemmer K (2011) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. Int J Earth Sci 100:201–220. https://doi.org/10.1007/s00531-010-0580-8

    Article  Google Scholar 

  • Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: New pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Pet Geol 37:162–183. https://doi.org/10.1016/j.marpetgeo.2012.05.010

    Article  Google Scholar 

  • Pángaro F (2013) Las cuencas paleozoicas episuturales del margen atlántico de la provincia de Buenos Aires y su control sobre la apertura atlántica. Dep. Ciencias Geológicas, Fac. Ciencias Exactas y Nat. Univ. Buenos Aires. Ph.D. thesis, p 300

  • Pángaro F, Ramos VA, Pazos PJ (2015) The Hesperides basin: a continental-scale upper Palaeozoic to Triassic basin in southern Gondwana. Basin Res 28:685–711. https://doi.org/10.1111/bre.12126

    Article  Google Scholar 

  • Pascal C, van Wijk JW, Cloetingh S, Davies GR (2002) Effect of lithosphere thickness heterogeneities in controlling rift localization: numerical modeling of the Oslo Graben. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  • Paton DA, Mortimer EJ, Hodgson N, Van Der Spuy D (2017) The missing piece of the South Atlantic jigsaw: when continental break-up ignores crustal heterogeneity. Geol Soc Spec Publ 438:195–210. https://doi.org/10.1144/SP438.8

    Article  Google Scholar 

  • Pinet C, Jaupart C, Mareschal JC, Gariepy C, Bienfait G, Lapointe R (1991) Heat flow and lithospheric structure of the eastern Canadian shield. J Geophys Res 96:19923–19941

    Google Scholar 

  • Prezzi C, Vizán H, Van Zele MA, Renda E (2013) Evolución de la Cuenca de Claromecó y su relación con la deformación de Las Sierras Australes, Provincia De Buenos Aires. Latinmag Lett 3:1–5

    Google Scholar 

  • Prezzi CB, Vizán H, Vázquez S, Renda E, Oriolo S, Japas MS (2018) Evolution of the Paleozoic Claromecó Basin (Argentina) and geodynamic implications for the southwestern margin of Gondwana: Insights from isostatic, gravimetric and magnetometric models. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.05.025

    Article  Google Scholar 

  • Rabinowitz PD, Labrecque J (1979) The Mesozoic South Atlantic Ocean and evolution of its continental marings. J Geophys Res 84(B11):5973–6002

    Article  Google Scholar 

  • Ramos VA (1984) Patagonia: un continente paleozoico a la deriva? Congr Geol Argent (san Carlos Bariloche) 2:311–325

    Google Scholar 

  • Ramos VA (1999) Rasgos estructurales del territorio argentino. Geología Argentina, Vol 29, Chapter 24, pp 15–75

  • Ramos VA (2008) Patagonia: a paleozoic continent adrift? J S Am Earth Sci 26:235–251. https://doi.org/10.1016/j.jsames.2008.06.002

    Article  Google Scholar 

  • Ramos VA, Naipauer M (2014) Patagonia: where does it come from? J Iber Geol 40:367–379. https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45304

    Article  Google Scholar 

  • Ramos VA, Chemale F, Naipauer M, Pazos PJ (2014) A provenance study of the Paleozoic Ventania System (Argentina): transient complex sources from Western and Eastern Gondwana. Gondwana Res 26:719–740. https://doi.org/10.1016/j.gr.2013.07.008

    Article  Google Scholar 

  • Ramos VA, Turic MA (1996) Geología y Recursos Naturales de la Plataforma Continental Argentina Institution: Asociación Geológica Argentina e Instituto Argentino del Petróleo. Vol 452

  • Ranalli G (1995) Rheology of the earth, 2nd edn. Chapman Hall, London

    Google Scholar 

  • Ranalli G (1997) Rheology and deep tectonics. Ann Geophys. https://doi.org/10.4401/ag-3893

    Article  Google Scholar 

  • Ranalli G, Murphy DC (1987) Rheological stratification of the lithosphere. Tectonophysics 132:281–295. https://doi.org/10.1016/0040-1951(87)90348-9

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc Lond 160:613–628. https://doi.org/10.1144/0016-764902-112

    Article  Google Scholar 

  • Ruíz F, Introcaso A (2011) Study of the Claromecó Basin from gravity, magnetic and geoid undulation charts. Boletín Del Inst Fisiogr y Geol 79–81:95–106

    Google Scholar 

  • Sandiford M, Hand M (1998) Controls on the locus of intraplate deformation in central Australia. Earth Planet Sci Lett 162:97–110

    Article  Google Scholar 

  • Sibuet JC, Hay WW, Prunier A, Montadert L, Hinz K, Fritsch J (1984) Early evolution of the South Atlantic Ocean: role of rifting episode. DSDP LXXV:483–508

    Google Scholar 

  • Sippel J, Meeßen C, Cacace M, Mechie J, Fishwick S, Heine C, Scheck-Wenderoth M, Strecker MR (2017) The Kenya rift revisited: Insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth 8:45–81. https://doi.org/10.5194/se-8-45-2017

    Article  Google Scholar 

  • Sonder LJ, England P (1986) Vertical averages of rheology of the continental lithosphere: relation to thin sheet parameters. Earth Planet Sci Lett 77:81–90. https://doi.org/10.1016/0012-821x(86)90134-2

    Article  Google Scholar 

  • Stephenson RA (1990) Beyond first-order thermal subsidence models for sedimentary basins? Quantitative dynamic stratigraphy. Prentice-Hall, Hoboken, pp 113–125

    Google Scholar 

  • Teruggi M, Kilmurray J (1980) Sierras Septentrionales de la provincia de Buenos Aires. In: Turner JCM (ed) Proceedings 2° Simposio Geología Regional Argentina, II. Academia Nacional de Ciencias de Córdoba, Córdoba, pp 919–956

    Google Scholar 

  • Teruggi ME, Leguizamón MA, Ramos VA (1988) Metamorfitas de bajo grado con afinidades oceánicas en el basamento de Tandil: su implicancia geotectónica, Provincia de Buenos Aires. Rev La Asoc Geol Argent 43(3):366–374

    Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh SAPL, Hardebol NJ, Beekman F (2007) 3D strength and gravity anomalies of the European lithosphere. Earth Planet Sci Lett 263:56–73. https://doi.org/10.1016/j.epsl.2007.08.035

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh SAPL (2009) A new thermal and rheological model of the European lithosphere. Tectonophysics 476:478–495. https://doi.org/10.1016/j.tecto.2009.07.022

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh S (2010) Thermal and rheological model of the European lithosphere. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer-Verlag, Berlin, pp 71–101

    Google Scholar 

  • Tesauro M, Audet P, Kaban MK, Brgmann R, Cloetingh S (2012) The effective elastic thickness of the continental lithosphere: comparison between rheological and inverse approaches. Geochem Geophys Geosyst 13(9):1–18. https://doi.org/10.1029/2012GC004162

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Petrunin AG, Aitken ARA (2020) Strength variations of the Australian continent: effects of temperature, strain rate, and rheological changes. Glob Planet Change 195:103322. https://doi.org/10.1016/j.gloplacha.2020.103322

    Article  Google Scholar 

  • Theunissen T, Huismans R (2019) Long-term coupling and feedback between tectonics and surface processes during non-volcanic rifted margin formation. J Geophys Res Solid Earth 124:12323–12347. https://doi.org/10.1029/2018JB017235

    Article  Google Scholar 

  • Tohver E, Cawood PA, Rossello EA, Jourdan F (2012) Closure of the Clymene ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Res 21:394–405. https://doi.org/10.1016/j.gr.2011.04.001

    Article  Google Scholar 

  • Tomezzoli RN, Vilas JF (1999) Paleomagnetic constraints on age of deformation of the Sierras Australes thrust and fold belt, Argentina. Geophys J Int 138:857–870

    Article  Google Scholar 

  • Tomezzoli RN, Arzadún G, Cristallini EO (2017) Anisotropía de susceptibilidad magnética y paleomagnetismo en la Formación Lolén de edad devónica: Sierras Australes de la provincia de Buenos Aires. Rev La Asoc Geol Argent 74:326–337

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics. applications of continuum physics to geological problems. John Wiley Sons Inc, New Jeresy

    Google Scholar 

  • Vazquez Lucero SE, Prezzi C, Gómez Dacal ML, Scheck-Wenderoth M, Bott J, Balestrini FI, Vizán H (2021) 3D gravity modelling of Colorado and Claromecó basins : new evidences for the evolution of the southwestern margin of Gondwana. Int J Earth Sci (geol Rundsch) 110:2295–2313. https://doi.org/10.1007/s00531-020-01944-3

    Article  Google Scholar 

  • Vilà M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490(3–4):152–164

    Article  Google Scholar 

  • Vizan H, Prezzi C, Geuna S, Japas MS, Renda E, Franzese J, Van Zele A (2017) Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics. Geosphere 13(5):1541–1554

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  • Wilks KR, Carter NL (1990) Rheology of some continental lower crustal rocks. Tectonophysics 182:57–77

    Article  Google Scholar 

  • Wintsch RP, Christoffersen R, Kronenberg AK (1995) Fluid-rock reaction weakening of fault zones. J Geophys Res 100:13021–13032

    Article  Google Scholar 

  • Zhang Y-S, Lay T (1999) Evolution of oceanic upper mantle structure. Phys Earth Planet Inter 114:71–80. https://doi.org/10.1016/S0031-9201(99)00047-3

    Article  Google Scholar 

  • Ziegler PA, Cloetingh S, van Wees J-D (1995) Dynamics of intraplate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252(1–4):7–59

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Argentine Agency of Scientific and Technological Promotion (ANPCyT) PICT 2016-0709, the “Proyecto de Unidad Ejecutora” (PUE) and the University of Potsdam, Germany which had granted a fellowship during the 2018 winter semester, from October 1st to March 15th. This research could not have been achieved without the help of the section 4.5 Basin Modelling of the GFZ institute, particularly with the assistance of Maximilian Frick and Antoine Jacquey, in the 3D thermal modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Vazquez Lucero.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucero, S.E.V., Ibarra, F., Dacal, M.L.G. et al. 3D thermal and rheological models of the southern Río de la Plata Craton (Argentina): implications for the initial stage of the Colorado rifting and the evolution of Sierras Australes. Int J Earth Sci (Geol Rundsch) 111, 1519–1538 (2022). https://doi.org/10.1007/s00531-022-02197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02197-y

Keywords

Navigation