Skip to main content
Log in

Magnetic fabrics and emplacement mechanisms of Valpaços and Freixo de Numão Variscan granites (Northern Portugal)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Valpaços (ValG) and Freixo de Numão (FNG) ilmenite-type granites, were studied to understanding ascent and emplacement mechanisms and deformation patterns evolution during the end of Variscan orogeny in Northeastern Portugal. Anisotropy of magnetic susceptibility, microstructural and microfracturing studies were performed in both granites. The correlation between magnetic anisotropy and deformation pointed out that ValG magnetic fabric resulted from the combination of magmatic and tectonic fabrics, the last one less expressive. The magnetic lineations (K1) WNW–ESE trajectories suggesting an ascending and emplacement assisted by pre-existing Variscan structures with similar orientation. The ascent was enabled by the presence of these structures, even so the spreading of magma to south was forceful since the metasedimentary foliations are adapted to the granite. The circular trajectories defined by the vertical magnetic foliations suggest a symmetric laccolith shape intrusion for ValG. The FNG magnetic fabric mimics the magmatic fabric inherited during the passive ascent and emplacement. The magnetic fabric suggests an ascent and emplacement assisted by NW–SE structures. The magnetic lineations describe trajectories to NE and SW consistent with a NW–SE dyke feeder zone located near the SW part. The magnetic trajectories defined by the directional parameters suggest an asymmetric shape for the FNG, with its dome located in the NE part. The deformation patterns evolution showed that ValG displays ductile to brittle–ductile deformation and FNG shows ductile deformation, both developed during the crystallization. The brittle structures recorded in both granites allow to reconstruct the maximum compressive stress (sigma1) rotation from NE–SW to N–S and, later from NW–SE to WNW–ESE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Martínez Catalán et al. 2014). b Ordovician and Variscan granites and major structures present in the Central and Northern of Portugal (adapted from Ferreira et al. 1987; Pereira et al. 1993; Hildenbrand et al. 2021). Small dashed squares represent the Valpaços (Fig. 2a) and Freixo de Numão (Fig. 2b) areas, respectively. Key: PTSZ Porto-Tomar shear zone, DBSZ Dúrico-Beirão shear zone, VRLSZ Vigo-Régua-Lamego shear zone, LRSZ Laza-Rebordelo shear zone, VISZ Vivero-Ifanes shear zone, BMSZ Bemposta-Moncorvo shear zone, JPCSZ Juzbado-Penalva do Castelo shear zone, PVF Penacova-Verín Fault, MVF Manteigas-Vilariça Fault

Fig. 2

adapted from Rodrigues et al. 2010 and Noronha et al. 2006) and b Freixo de Numão area (adapted from Ferreira da Silva et al. 1991). Small white circles represent the sampling sites

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aerden DGAM (2004) Correlating deformation in Variscan NW-Iberia using porphyroblasts; implications for the Ibero-Armorican Arc. J Struct Geol 26(1):177–196. https://doi.org/10.1016/S0191-8141(03)00070-1

    Article  Google Scholar 

  • Albuquerque CAR (1971) Petrochemistry of a series of granitic rocks from the northern Portugal. Geol Soc Am Bul 82(10):2783–2798. https://doi.org/10.1130/0016-7606(1971)82[2783:POASOG]2.0.CO;2

    Article  Google Scholar 

  • Allmendinger RW, Cardozo NC, Fisher D (2013) Structural Geology Algorithms: Vectors & Tensors. England, Cambridge University Press, Cambridge

    Google Scholar 

  • Anders MH, Laubach SE, Scholz CH (2014) Microfractures. A review. J Struct Geol 69:377–394. https://doi.org/10.1016/j.jsg.2014.05.011

    Article  Google Scholar 

  • Antunes IMHR, Neiva AMR, Silva MMVG, Corfu F (2009) The genesis of I- and Stype granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 111:168–185

    Article  Google Scholar 

  • Aranguren A, Larrea FJ, Carracedo M, Cuevas J, Tubía JM (1997) The Los Pedroches Batholith (Southern Spain): Polyphase Interplay Between Shear Zones in Transtension and Setting of Granites. Bouchez JL, Hutton DHW, Stephens WE (d) Granite: from Segregation of Melt to Emplacement Fabrics. Kluwer Academic Publishers, Dordrecht, pp 215–229

    Chapter  Google Scholar 

  • Arthaud F, Matte PH (1975) Les décrochements tardi hercyniens du Sud-Ouest de l’Europe. Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics 25(1/2):139–171. https://doi.org/10.1016/0040-1951(75)90014-1

    Article  Google Scholar 

  • Auréjac JB, Gleizes G, Diot H, Bouchez JL (2004) The Quérigut Complex (Pyrenees, France) revisited by the AMS technique: a syntectonic pluton of the Variscan transpression. Bull Soc Geol Fr 175:157–174. https://doi.org/10.2113/175.2.157

    Article  Google Scholar 

  • Averbuch O, Frizon de Lamotte D, Kissel C (1992) Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: a test case from the Corbieres (NE Pyrenees, France). J Struct Geol 14:461–474. https://doi.org/10.1016/0191-8141(92)90106-7

    Article  Google Scholar 

  • Blenkinsop TG (2012) Visualizing structural geology: From Excel to Google Earth. Comput Geosci 45:52–56. https://doi.org/10.1016/j.cageo.2012.03.007

    Article  Google Scholar 

  • Blumenfeld Ph, Bouchez JL (1988) Shear criteria in granite and migmatite deformed in magmatic and solid states. J Struct Geol 10(4):361–372. https://doi.org/10.1016/0191-8141(88)90014-4

    Article  Google Scholar 

  • Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156:1–20. https://doi.org/10.1016/0040-1951(88)90279-X

    Article  Google Scholar 

  • Borradaile GT, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93. https://doi.org/10.1016/S0012-8252(96)00044-X

    Article  Google Scholar 

  • Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551. https://doi.org/10.1016/j.jsg.2009.09.006

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from Segregation of Melt to Emplacement Fabrics. Kluwer Academic Publishers, Dordrecht, pp 95–112

    Chapter  Google Scholar 

  • Bouchez JL, Gleizes G (1995) Two-stage deformation of the Mont-Louis-Andorra granite pluton (Variscan Pyrenees) inferred from magnetic susceptibility anisotropy. J Geol Soc 152:669–679. https://doi.org/10.1144/gsjgs.152.4.0669

    Article  Google Scholar 

  • Bouchez JL, Bernier S, Rochette P, Guineberteau B (1987) Log des susceptibilités magnétiques et anisotropies de susceptibilité dans le granite de Beauvoir: conséquences pour sa mise em place. Géologie de la France, BRGM 2–3:223–232

  • Bouchez JL, Delas C, Gleizes G, Nédélec A, Cuney M (1992) Submagmatic microfractures in granites. Geology 20(1):35–38. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Bouchez JL, Mi Nguema T, Esteban L, Siqueira E, Scrivener R (2006) The tourmaline-bearing granite pluton of Bodmin (Cornwall, UK): magnetic fabric study and regional interference. J Geol Soc 163:606–616. https://doi.org/10.1144/0016-764905-104

    Article  Google Scholar 

  • Bouchez JL, Gleizes G, Djouadi MT, Rochette P (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees). Tectonophysics 184(2):157–171. https://doi.org/10.1016/0040-1951(90)90051-9

    Article  Google Scholar 

  • Bouillin JP, Bouchez JL, Lespinasse P, Pêcher A (1993) Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy). Earth Planet Sci Lett 118:263–279. https://doi.org/10.1016/0012-821X(93)90172-6

    Article  Google Scholar 

  • Brun JP, Pons J (1980) Strain patterns of pluton emplacement in a crust undergoing non-axial deformation, Sierra Morena, Southern Spain. J Struct Geol 3(3):219–229. https://doi.org/10.1016/0191-8141(81)90018-3

    Article  Google Scholar 

  • Capdevila R, Floor P (1970) Les différents types de granites hercyniens et leur distribution dans le nord oust de l’Espagne. Bol Geol Min España 81(2–3):215–225

    Google Scholar 

  • Capdevila R, Corretge LG, Floor F (1973) Les granitoides varisques de la Meseta Ibérique. Soc Géol France, Bull 15:209–228

    Article  Google Scholar 

  • Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet. Comput Geosci 51:193–205. https://doi.org/10.1016/j.cageo.2012.07.021

    Article  Google Scholar 

  • Chadima M, Jelinek V (2009) Anisoft 4.2: Anisotropy Data Browser for Windows. Agico. Inc, Brno

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust Jour Earth Sci 48:489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360. https://doi.org/10.1016/0040-1951(92)90316-X

  • Corrêa-Ribeiro H., 2018. Génese e cinemática de instalação do plutão granítico de Valpaços. Dissertation, University of Porto

  • Corretgé LG, Ugidos JM, Martinez FJ (1974) Les series granitiques varisques du secteur Centre-Occidental Espagnol. In: La Chaine Varisque d’Europe Moyenne et Occidentale. Coll Int CNRS Rennes 243:453–461

  • Corry CE (1988) Laccoliths; mechanics of emplacement and growth. Spec Pap Geol Soc Am 220:1–110. https://doi.org/10.1130/SPE220-p1

  • Cruden AR (1990) On the emplacement of tabular granites. J Geol Soc 155:853–862

    Google Scholar 

  • Cruden AR, McCaffrey JW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26(4–5):303–315

    Article  Google Scholar 

  • Cruz C, Sant’ Ovaia H, Raposo MIB, Lourenço JM, Almeida F, Noronha F (2021) Unraveling the emplacement history of a Portuguese post-tectonic Variscan pluton using magnetic fabrics and gravimetry. J Struct Geol 153:104470. https://doi.org/10.1016/j.jsg.2021.104470

    Article  Google Scholar 

  • Darrozes J, Moisy M, Olivier Ph, Améglio H, Bouchez JC (1994) Structure magmatique du Sidobre (Tarn, France): de l'échelle du massif à celle de l'échantillon. C.R. Acad Sci Paris 318(2): 243–250.

  • Dias R, Ribeiro A (1995) The Ibero-Armorican Arc: A collision effect against an irregular continent? Tectonophysics 246:113–128. https://doi.org/10.1016/0040-1951(94)00253-6

    Article  Google Scholar 

  • Dias G, Leterrier J, Mendes A, Simões P, Bertrand JM (1998) U-Pb zircon and monazite geochronology of syn- to post-tectonic Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45:349–369. https://doi.org/10.1016/S0024-4937(98)00039-5

  • Dias G, Noronha F, Ferreira N (2000) Variscan plutonism in the Central Iberian zone (Northern Portugal). Eurogranites, Field meeting, Guidebook

  • Farias P, Gallastegui G, Gonzalez Lodeiro, F. et al (1987) Aportaciones al conocimiento de la litoestratigrafia y estructura de Galícia Central. In: IX Reunião de Geologia do Oeste Peninsular, Porto, 1985. Memórias Museu Laboratório Mineralogia Geologia da Faculdade Ciências Universidade Porto 1:411–431

  • Farinha Ramos JM, Gomes da Silva F et al (1971) Sobre a geologia e a metalogenia da região de Valpaços-Vilarandelo-Sonim (Trás-os-Montes). I- Considerações gerais. In: Estudos, Notas e Trabalhos. Serviço Fomento Mineiro 21(1–2):7–17

  • Ferreira da Silva A, Ribeiro ML (1991) Notícia explicativa da Folha 15-A Vila Nova de Foz Côa. Serv Geol Portugal

  • Ferreira N, Iglésias M, Noronha F, Pereira E, Ribeiro A, Ribeiro ML (1987) Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In: Bea F, Carnicero A, Gonzalo J, Lopez Plaza M, Rodriguez Alonso M (Ed) Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico. Editorial Rueda, Madrid. Libro de Homenaje a L.C. García de Figuerola, pp 37–51

  • Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005

    Article  Google Scholar 

  • Gaillot P, Saint Blanquat M, Bouchez JL (2006) Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics 418(1–2):3–19

    Article  Google Scholar 

  • Gapais D (1989) Shear structures within deformed granites: mechanical and thermal indicators. Geology 17(12):1144–1147. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Gapais D, Barbarin B (1986) Quartz fabric transition in a cooling syntectonic granite (Hermitage, France). Tectonophysics 125:357–370. https://doi.org/10.1016/0040-1951(86)90171-X

    Article  Google Scholar 

  • Gomes MEP (1996) Mineralogia, petrologia e geoquímica das rochas granitóides da área de Rebordelo-Bouça- Torre de D. Chama - Agrochão e as mineralizações associadas. Dissertation, Universidade de Trás-os-Montes e Alto Douro

  • Gonçalves A, Sant’ Ovaia H, Noronha F (2019) Emplacement mechanism of Caria-Vila da Ponte Pluton (Northern Portugal): Building and internal magmatic record. J Struct Geol 124:91–111. https://doi.org/10.1016/j.jsg.2019.04.009

    Article  Google Scholar 

  • Gonçalves A, Sant’ Ovaia H, Noronha F (2020) Geochemical signature and magnetic fabric of Capinha Massif (Fundão, Central Portugal): genesis, emplacement and relation with W-Sn mineralizations. Minerals 10:557. https://doi.org/10.3390/min10060557

    Article  Google Scholar 

  • Gonçalves A, Sant’ Ovaia H, Ribeiro MA, Noronha F (2020) The Esmolfe-Matança granite (Penalva do Castelo, central Portugal): A keystone to understand the ascent and emplacement of magmas under low tectonic stress. J Struct Geol 139:104–143. https://doi.org/10.1016/j.jsg.2020.104143

    Article  Google Scholar 

  • Gonçalves A (2021) Role of the late-Variscan structures in the emplacement of late-orogenic granitoids in NW Iberian Peninsula. Metallogenic implications in the occurrence of W(Sn) mineralizations. Ph.D. thesis, Faculty of Sciences, University of Porto, 523 pp

  • Grégoire V, Saint Blanquat M, Nédélec A, Bouchez JL (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophys Res Lett 22(20):2765–2768

    Article  Google Scholar 

  • Guineberteau B, Bouchez JL, Vigneresse JL (1987) The Mortagne granite pluton (France) emplaced by pull-apart along a shear zone: structural and gravimetric arguments, and regional implication. Geol Soc Am Bull 99:763–770. https://doi.org/10.1130/0016-7606(1987)99%3c763:TMGPFE%3e2.0.CO;2

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Johnston ST, Pastor-Galán D, Murphy JB, Franco MP, Gonzalo JC (2011) Diachronous post-orogenic magmatism within a developing orocline in Iberia European Variscides. Tectonics. https://doi.org/10.1029/2010TC002845

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Collins AS, Fernández-Suárez J, Pastor-Galán D, González-Clavijo E, Jourdan F, Weil AB, Johnston ST (2015) Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophysics 643(7):44–54. https://doi.org/10.1016/j.tecto.2014.12.009

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, López-Carmona A, Gärtner A (2018) Exhuming a cold case: The early granodiorites of the northwest Iberian Variscan belt—A Visean magmatic flare-up? Lithosphere 10(2):194–216. https://doi.org/10.1130/L706.1

    Article  Google Scholar 

  • Hancock PL (1985) Brittle microtectonics: principles and practice. J Struc Geol 7(3–4):437–457. https://doi.org/10.1016/0191-8141(85)90048-3

    Article  Google Scholar 

  • Hildenbrand A, Marques FO, Quidelleur X, Noronha F (2021) Exhumation history of the Variscan orogen in western Iberia as inferred from new K-Ar and 40Ar/39Ar data on granites from Portugal. Tectonophysics 812:228863. https://doi.org/10.1016/j.tecto.2021.228863

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic Anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5(1):37–82. https://doi.org/10.1007/BF01450244

    Article  Google Scholar 

  • Hrouda F, Janák F (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148. https://doi.org/10.1016/0040-1951(76)90181-5

    Article  Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27(145):293–305. https://doi.org/10.11456/shigenchishitsu1951.27.293

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67. https://doi.org/10.1016/0040-1951(81)90110-4

    Article  Google Scholar 

  • Julivert M, Fontboté JM, Ribeiro A, Conde L (1974) Mapa Tectónico de la Península Ibérica y Baleares. Escala 1: 1,000,000. Memoria Explicativa. Instituto Geológico y Minero de España, Madrid

  • Kroner U, Roscher M, Romer RL (2016) Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence. Tectonophysics 681:220–233. https://doi.org/10.1016/j.tecto.2016.03.034

    Article  Google Scholar 

  • Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J Metamorph Geol 14:581–589. https://doi.org/10.1046/j.1525-1314.1996.00413.x

    Article  Google Scholar 

  • Lagarde JL, Capdevila R, Fourcade S (1992) Granites et collision continentale: l’exemple des granitoïdes carbonifères dans la chaîne hercynienne ouest-européenne. Bull Soc Géol 163(5):597–610

    Google Scholar 

  • Leblanc D, Gleizes G, Lespinasse L, Olivier Ph, Bouchez JL (1994) The Maladeta granite polydiapir, Spanish Pyrenees: a detailed magnetostructural study. J Struct Geol 16(2):223–235. https://doi.org/10.1016/0191-8141(94)90106-6

    Article  Google Scholar 

  • Lotze F (1945) Zur gliederung der Varisziden der Iberischen Meseta. Geoteckt Forsch Berlin 6:78–92

    Google Scholar 

  • Marques FO, Mateus A, Tassinari C (2002) The Late-Variscan fault network in central-northern Portugal (NW Iberia): a re-evaluation. Tectonophysics 359:255–270. https://doi.org/10.1016/S0040-1951(02)00514-0

    Article  Google Scholar 

  • Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247. https://doi.org/10.1111/j.1365-3121.2011.01005.x

    Article  Google Scholar 

  • Martínez Catalán JR (2012) The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. I J Earth Sci 101:1299–1314. https://doi.org/10.1007/s00531-011-0715-6

    Article  Google Scholar 

  • Martínez Catalán JR, Arenas R et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. CR Geosci 314:114–126. https://doi.org/10.1016/j.crte.2008.11.004

    Article  Google Scholar 

  • Martínez Catalán JR, Rubio Pascual FJ, Díez Montes A, Díez Fernández R, Barreiro J, Dias da Silva I, Gonzállez Clavijo E, Ayarzal P, Alccock JE (2014) The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janousek V, Oggiano G (Ed) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc London, Special Publications 405. https://doi.org/10.1144/SP405.1

  • Martins HCB (1998) Geoquímica e petrogénese de granitóides tarditectónicos e pós-tectónicos. Implicações metalogénicas. Ph.D. thesis, University of Trás-os-Montes e Alto Douro (unpublished)

  • Martins HCB, Sant O’vaia H, Noronha F (2009) Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: An integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos 111:142–155. https://doi.org/10.1016/j.lithos.2008.10.018

    Article  Google Scholar 

  • Martins HCB, Sant’ Ovaia H, Abreu J, Oliveira M, Noronha F (2011) Emplacement of the Lavadores granite (NW Portugal): U/Pb and AMS results. Comptes Rendus Geoscience 343:387–396. https://doi.org/10.1016/j.crte.2011.05.002

    Article  Google Scholar 

  • Martins HCB, Sant’Ovaia H, Noronha F (2013) Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: constraints from U-Pb zircon geochronology, AMS data and Sr–Nd–O isotope geochemistry. Lithos 162–163:221–235. https://doi.org/10.1016/j.lithos.2013.01.001

    Article  Google Scholar 

  • Matte P (1986) Tectonics and Plate Tectonics Model for the Variscan Belt of Europe. Tectonophysics 126:329–374. https://doi.org/10.1016/0040-1951(86)90237-4

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan Belt in Western Europe. Tectonophysics 196(3/4):309–337. https://doi.org/10.1016/0040-1951(91)90328-P

    Article  Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128. https://doi.org/10.1046/j.1365-3121.2001.00327.x

    Article  Google Scholar 

  • Nédélec A, Bouchez JL (2015) Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford University Press. ISBN 978–0–19–870561–1

  • Neiva AMR (2002) Portuguese Granites Associated with Sn-W and Au Mineralizations. Bull Geol Soc Finland 74:79–101. https://doi.org/10.17741/bgsf/74.1-2.003

  • Neiva AMR, Gomes MEP (2001) Diferentes tipos de granitos e seus processos petrogenéticos: Granitos Hercínicos Portugueses. Memórias da Academia das Ciências de Lisboa XXXIX, 53–95

  • Nogueira P (1997) Estudo de paleofluidos mineralizantes (Au, Ag, As) e sua migração. Aplicação a regiões auríferas do Norte de Portugal. Dissertation, University of Porto, Porto, Portugal

  • Nogueira P, Noronha F (1995) PLANIF: Um Programa de Anaálise de imagens para o Estudo de Microestruturas das rochas. IV Congresso Nacional de Geologia, Porto, 1995. In: Borges FS, Marques MM (Ed) Mem Mus Labor Miner Geol Factory Ciênc University: Porto, Portugal Volume 4, 379–382

  • Noronha F, Ramos JMF, Rebelo JA, Ribeiro A, Ribeiro ML (1979) Essai de corrélation des phases de déformation hercynienne dans le Nord-Ouest Péninsulaire. Bol Soc Geol Portugal 21(2/3):227–237

    Google Scholar 

  • Noronha F, Ribeiro MA et al (2006) Jazigos filonianos hidrotermais e aplito-pegmatíticos espacialmente associados a granitos (norte de Portugal). In: Dias R, Araújo A, Terrinha P, Kullberg JC (Ed) Geologia de Portugal no contexto da Iberia, Évora, pp 123–138. ISBN: 972-778-094-6

  • O’Reilly W (1984) Rock and Mineral Magnetism. Springer, California, p 220

    Book  Google Scholar 

  • Oen IS (1970) Granite intrusion, folding and metamorphism in central northern Portugal. Bol Geol Mine España 81(2/3):271–298

    Google Scholar 

  • Parés JM, van der Pluijm B, Dinares-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14. https://doi.org/10.1016/S0040-1951(99)00115-8

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin. https://doi.org/10.1007/3-540-29359-0

    Article  Google Scholar 

  • Pastor-Galán D, Gutiérrez-Alonso G, Weil AB (2011) Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics 507:31–46. https://doi.org/10.1016/j.tecto.2011.05.005

    Article  Google Scholar 

  • Pastor-Galán D, Groenewegen T et al (2015a) One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea Amalgamation. Geology 43(6):527–530. https://doi.org/10.1130/G36701.1

    Article  Google Scholar 

  • Pastor-Galán D, Ursem B, Meere PA, Langereis C (2015b) Extending the Cantabrian Orocline to two continents (from Gondwana to Laurussia). Paleomagnetism from South Ireland. Earth Planet Sci Lett 432:223–231. https://doi.org/10.1016/j.epsl.2015.10.019

    Article  Google Scholar 

  • Paterson SR, Fowler TK (1993) Reexamination pluton emplacement processes. J Struct Geol 15:191–206. https://doi.org/10.1016/0191-8141(93)90095-R

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363. https://doi.org/10.1016/0191-8141(89)90074-6

    Article  Google Scholar 

  • Paterson SR, JrTK F et al (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. https://doi.org/10.1016/S0024-4937(98)00022-X

    Article  Google Scholar 

  • Pereira E, Ribeiro A, Meireles C (1993) Cisalhamentos hercínicos e controlo das mineralizações de Sn-W, Au e U na Zona Centro-Ibérica, em Portugal. Cuad Lab Xeol Laxe 18:89–119

    Google Scholar 

  • Pereira I, Dias R, Bento dos Santos T, Mata J (2017) Exhumation of a migmatite complex along a transpressive shear zone: inferences from the Variscan Juzbado-Penalva do Castelo shear zone (Central Iberian Zone). J Geol Soc 174(6):1004. https://doi.org/10.1144/jgs2016-159

    Article  Google Scholar 

  • Pereira MF, Díez Fernández R, Gama C, Hofmann M, Gärtner A, Linnemann U (2018) S‐type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int J Earth Sci 107:251–267. https://doi.org/10.1007/s00531-017-1488-3

  • Pérez-Estaún A, Bastida F, Alonso JL, Marquínez J, Aller J, Alvarez-Marrón J, Marcos A, Pulgar JA (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt: The Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7(3):517–537. https://doi.org/10.1029/tc007i003p00517

    Article  Google Scholar 

  • Petford N, Cruden AR, McCffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Article  Google Scholar 

  • Priem HNA, Boelrijk NAIM et al (1970) Dating events of acid plutonism through the Paleozoic of the Western Iberian Peninsula. Ecl Geol Helv 63:255–274

    Google Scholar 

  • Pueyo-Anchuela O, Casas-Sainz AM, Pueyo EP, Juan AP, Imaz AG (2013) Analysis of the ferromagnetic contribution to the susceptibility by low field and high field methods in sedimentary rocks of the Southern Pyrenees and Northern Ebro foreland basin (Spain). Terra Nova 25:307–314. https://doi.org/10.1111/ter.12037

    Article  Google Scholar 

  • Quesada C (1991) Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics 185(3–4):225–245. https://doi.org/10.1016/0040-1951(91)90446-Y

    Article  Google Scholar 

  • Ribeiro A (1974) Contribution à l’étude de Trás-os-Montes Oriental. Serviços Geológicos de Portugal. Dissertation, Memórias dos Serviços Geológicos Portugal, Lisboa

  • Ribeiro A, Quesada C, Dallmeyer RD (1990) Geodynamic evolution of the Iberian Massif. In: Dallmeyer RD, Martínez Garcia E (eds) Pre-Mesozoic Geology of Iberia, Springer-Verlag, Berlin, Heidelberg, pp 399–410

  • Ribeiro A, Munhá J et al (2009) Mechanics of thick-skinned Variscan overprinting of Cadomian basement (Iberian Variscides). C R Geoscience 341:127–139. https://doi.org/10.1016/j.crte.2008.12.003

    Article  Google Scholar 

  • Ribeiro A, Iglésias M, Ribeiro ML, Pereira E (1983) Modèle géodynamique des Hercynides Ibériques. Mem Serv Geol Portugal 69(2):291–293

  • Robion P, Grelaud S, Frizon de Lamotte D (2007) Pre-folding magnetic fabrics in foldand- thrust belts: why the apparent internal deformation of the sedimentary rocks from the Minervois Basin (NE Pyrenees, France) is do high compared to the Potwar Basin (SW Himalaya, Pakistan)? Sediment Geol 196:181–200. https://doi.org/10.1016/j.sedgeo.2006.08.007

    Article  Google Scholar 

  • Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1243–1257. https://doi.org/10.1016/0191-8141(87)90009-5

    Article  Google Scholar 

  • Rodrigues J, Pereira E, Ribeiro A (2013) Complexo de mantos parautóctones do NE de Portugal: estrutura interna e tectonoestratigrafia.275–331 In: Dias R, Araújo A, Terrinha P, Kullberg JC (ed) Geologia de Portugal, Volume I- Geologia Pré-Mesozóica de Portugal, Escolar Editora. Lisboa

  • Rodrigues J (2008) Estrutura do Arco da Serra de Santa Comba - Serra da Garraia. Parautóctone de Trás-os-Montes. Dissertation, Faculdade de Ciências da Universidade de Lisboa

  • Rodrigues J (2010) Carta Geológica de Portugal, Folha 7C- Mirandela, escala 1:50000. Unidade de Geologia e Cartografia Geológica do Laboratório Nacional de Energia e Geologia

  • Román-Berdiel T, Brun JP, Gapais D (1995) Analogue models of laccolith formation. J Struct Geol 17:1337–1346. https://doi.org/10.1016/0191-8141(95)00012-3

    Article  Google Scholar 

  • Román-Berdiel T, Gaspais D, Brun JP (1997) Granite intrusion along strike-slip zones in experiment and nature. Amer J Sci 297:651–678. https://doi.org/10.2475/ajs.297.6.651

  • Sadeghian M, Bouchez JL, Nédélec A, Siqueira R, Valizadeh MV (2005) The granite pluton of Zahedan (SE-Iran): a petrological and magnetic fabric study of s syntectonic sill emplaced in a transtensional setting. J Asian Earth Sci 25:301–325. https://doi.org/10.1016/S1367-9120(04)00071-9

    Article  Google Scholar 

  • Saint Blanquat M, Law RD, Bouchez JL, Morgan S (2001) Internal structure & emplacement of the Papoose Flat pluton: an integrated structural, petrographic & magnetic susceptibility study. Geol Soc Am Bull 113(8):976–995

    Article  Google Scholar 

  • Saint Blanquat M, Habert G, Horsman E, Morgan S, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non tectonically-assisted emplacement in the upper-crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428(1–4):1–31. https://doi.org/10.1016/j.tecto.2006.07.014

    Article  Google Scholar 

  • Sant’Ovaia H, Bouchez JL, Noronha F, Leblanc D, Vigneresse JL (2000) Composite-laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern Portugal): a combined AMS and gravity study. Transact Royal Soc Edinburgh Earth Sci 91:123–137. https://doi.org/10.1017/S026359330000732X

    Article  Google Scholar 

  • Sant’Ovaia H, Olivier Ph, Ferreira N, Noronha F, Leblanc D (2010) Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas). J Struct Geol 32:1450–1465. https://doi.org/10.1016/j.jsg.2010.09.003

    Article  Google Scholar 

  • Sant’Ovaia H, Martins HCB, Noronha F (2013) Oxidized and reduced Portuguese Variscan granites associated with W and Sn hydrothermal lode deposits: magnetic susceptibility results. Comun Geol 100 (1):33–39. ISSN: 0873–948X; e-ISSN: 1647–581X

  • Schöpa A, Floess D, Saint Blanquat M, Annen C, Launeau P (2015) The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith. Tectonophysics 642:1–15

    Article  Google Scholar 

  • Shaw J, Johnston ST, Gutiérrez-Alonso G, Weil AB (2012) Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth Planet Sci Lett 329–330:60–70. https://doi.org/10.1016/j.epsl.2012.02.014

    Article  Google Scholar 

  • Simmons G, Richter D (1976) Microcracks in rock. In: Strens RGJ (ed) The Physics and Chemistry of Minerals and Rocks. Wiley, New York, pp 105–137

    Google Scholar 

  • Sousa MB (1982) Litoestratigrafia e estrutura do “complexo Xisto-Grauváquico” – Grupo do Douro (Nordeste de Portugal). Dissertation, Mus Lab Min Geol Univ Coimbra, Coimbra

  • Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. Elsevier, Amsterdam, p 195

    Google Scholar 

  • Stampfli GM, Kozur HW, 2006. Europe from the Variscan to the Alpine cycles. In: Gee DG, Stephenson RA (Ed) European Lithosphere Dynamics, Geological Society, London, Memoirs, 32, pp 57–82

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J Struct Geol 24:1861–1884. https://doi.org/10.1016/S0191-8141(02)00035-4

    Article  Google Scholar 

  • Takagi T (2004) Origin of magnetite- and ilmenite-series granitic rocks in the Japan arc. Amer J Sci 304:169–204. https://doi.org/10.2475/ajs.304.2.169

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman Hall London. https://doi.org/10.1002/gj.3350300111

    Article  Google Scholar 

  • Valle Aguado B, Azevedo MR, Nolan J, Medina J, Costa MM, Corfu F, Martínez Catalán JR (2017) Granite emplacement at the termination of a major Variscan transcurrent shear zone: the late collisional Viseu batholith. J Struct Geol 98:15–37. https://doi.org/10.1016/j.jsg.2017.04.002

    Article  Google Scholar 

  • Vigneresse JL (1995) Control of granite emplacement by regional deformation. Tectonophysics 249:173–186. https://doi.org/10.1016/0040-1951(95)00004-7

    Article  Google Scholar 

  • Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37(6):1579–1600. https://doi.org/10.1093/petrology/37.6.1579

    Article  Google Scholar 

  • Villaseca C, Ruiz-Martínez VC, Pérez-Soba C (2017) Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma. Geol Acta 15(4):379–394. https://doi.org/10.1344/GeologicaActa2017.15.4.8

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22. https://doi.org/10.1016/0040-1951(77)90003-8

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fundação para a Ciência e Tecnologia (FCT), Grant Number SFRH/BD/115324/2016. This work is supported by national funding awarded by FCT—Foundation for Science and Technology, I.P., projects UIDB/04683/2020 and UIDP/04683/2020—ICT (Earth Sciences Institute, Porto Pole). The authors thank Department of Geosciences, Environment and Spatial Planning at the Faculty of Sciences of the University of Porto for making the laboratories available for carrying out the studies presented in this paper. The authors must thank the POCTEP- Interreg Project 0284_ESMIMET_3_E “Development of exploitation environmental and energy techniques in metallic mining” for the technical support. The authors thank Duarte Silva and José Carlos Oliveira for their help in the sampling and fieldwork, and Heloísa Ribeiro for the previous AMS results. The authors must thank Dr. Michel de Saint Blanquat and the two anonymous reviewers for their helpful comments and suggestions, which clearly improve the quality of the manuscript.

Funding

This research was funded by the Fundação para a Ciência e Tecnologia (FCT), Grant Number SFRH/BD/115324/2016.

Author information

Authors and Affiliations

Authors

Contributions

Ana Gonçalves: Conceptualization, Methodology, Software, Formal analysis, Validation, Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing, Visualization, Project administration. Helena Sant’Ovaia: Methodology, Software, Validation, Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing, Visualization, Supervision, Project administration, Funding acquisition. Helena C.B. Martins: Methodology, Validation, Investigation Resources, Data curation, Writing—review and editing, Visualization, Supervision.Fernando Noronha: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing, Visualization, Funding acquisition.

Corresponding author

Correspondence to Ana Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to publish

I Ana Marta Vasques Gonçalves give my consent for information about myself to be published in International Journal Earth Sciences (“Emplacement mechanisms and deformation patterns of Valpaços and Freixo de Numão granites (NE of Portugal) inferred from petrophysical studies: constraints on tectono-magmatic regional evolution during late-Variscan times”), as corresponding author Ana Gonçalves. I understand that the text and any pictures or videos published in the article will be used only in educational publications intended for professionals. The pictures and text may also appear on other websites or in print, may be translated into other languages or used for commercial purposes. I understand that the information will be published without my name attached, but that full anonymity cannot be guaranteed. I have been offered the opportunity to read the manuscript. I acknowledge that it is not possible to ensure complete anonymity, and someone may be able to recognize me. However, by signing this consent form I do not in any way give up, waive or remove my rights to privacy. I may revoke my consent at any time before publication, but once the information has been committed to publication (“gone to press”), revocation of the consent is no longer possible. Ana Marta Vasques Gonçalves, 1st April 2022. A copy of the consent form is available for review by the Editor of this journal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A., Sant’Ovaia, H., Martins, H.C.B. et al. Magnetic fabrics and emplacement mechanisms of Valpaços and Freixo de Numão Variscan granites (Northern Portugal). Int J Earth Sci (Geol Rundsch) 111, 1437–1468 (2022). https://doi.org/10.1007/s00531-022-02187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02187-0

Keywords

Navigation