Skip to main content

Advertisement

Log in

Calcareous nannofossil biostratigraphy and paleoenvironment of the Eocene–Oligocene interval in the Pabdeh Formation in southwestern Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Studies of the Paleogene sequence in the Zagros Basin of Iran are crucial due to the existence of large oil fields such as the Pazanan oil field. This study examines calcareous nannofossils from the Eocene–Oligocene interval in the upper part of the Pabdeh Formation in the Zagros Basin. Samples were taken from a well drilled in the Pazanan oil field, located in the Dezful Embayment (Zagros Basin, southwestern Iran). The studied section is ~ 54 m thick and comprises mainly a succession of marls and limestones. Calcareous nannofossil biostratigraphy allows the studied interval to be assigned to Martini (Standard tertiary and quaternary calcareous nannoplankton zonation. In: Proceedings of the 2nd planktonic conference. Roma, Italy, p 739–785, 1971) Zones NP19 (Isthmolithus recurvus Zone) through NP22 (Helicosphaera reticulata Zone), which spans the Priabonian and Rupelian stages and includes the Eocene/Oligocene boundary. The nannoflora paleoecology allows us to characterize major changes in paleoproductivity during this interval. Late Eocene (Priabonian) assemblages are dominated by oligotrophic nannofossils. Above the Eocene/Oligocene boundary, there is a diverse assemblage of eutrophic calcareous nannofossils, with a significant decrease in the abundance of oligotrophic species. As well as nutrient supply, water temperature also appears to be another main controlling factor of the paleoenvironment in this region, where there is an increase in cold-water species recorded at the base of the Oligocene (Zone NP21), accompanied by a decrease in warm-water species. These variation in the calcareous nannofossil assemblages may indicate increased nutrient supply, climatic imbalances—associated with weather changes—and eventually sea-surface temperature (SST) cooling in this part of the Zagros Basin (Neo-Tethys domain) throughout the Eocene/Oligocene transition (EOT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Popov et al. 2004 and Scotese 2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Agnini C, Fornaciari E, Rio D, Tateo F, Backman J, Giusberti L (2007) Responses of calcareous nannofossil assemblages, mineralogy, and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Mar Micropaleontol 63:19–38. https://doi.org/10.1016/j.marmicro.2006.10.002

    Article  Google Scholar 

  • Agnini C, Fornaciari E, Raffi I, Catanzariti R, Palike H, Backman J, Rio D (2014) Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl Stratigr 7(2):131–181

    Article  Google Scholar 

  • Ahifar A, Kani A, Amiri Bakhtiar H (2015) Calcareous nannofossil biostratigraphy of Pabdeh Formation at Gurpi anticline. Geosciences 24(95):107–120

    Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold–thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Alizadeh B, Sarafdokht H, Rajabi M, Opera A, Janbaz M (2012) Organic Geochemistry and petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (Paleogene) potential source rock in Southern part of the Dezful Embayment, Iran. J Organ Geochem 49:36–46

    Article  Google Scholar 

  • Aljahdali MH, Zalmout LS, Almufareeh Y (2020) Upper Eocene calcareous nannofossil biostratigraphy: a new preliminary Priabonian record from northern Saudi Arabia. Appl Ecol Environ Res 18(4):5607–5625. https://doi.org/10.15666/aeer/1804_56075625

    Article  Google Scholar 

  • Amirshahkarami M, Vaziri-Moghaddam H, Taheri A (2007a) Sedimentary facies and sequence stratigraphy of the Asmari Formation at Chaman-Bolbol, Zagros Basin, Iran. J Asian Earth Sci 29:947–959

    Article  Google Scholar 

  • Amirshahkarami M, Vaziri-Moghaddam H, Taheri A (2007b) Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in southwest Iran. Hist Biol 19(2):173–183

    Article  Google Scholar 

  • Amirshahkarami M, Ghabishavi A, Rahmani A (2010) Biostratigraphy and paleoenvironment of the larger benthic foraminifera in wells sections of the Asmari Formation from the Rag-e-Safid oil field, Zagros Basin, southwest Iran. Stratigr Sedimentol Res 40(3):63–84

    Google Scholar 

  • Armstrong McKay DI, Tyrrell T, Wilson PA (2016) Global carbon cycle perturbation across the Eocene-Oligocene climate transition. Paleoceanography 31:311–329. https://doi.org/10.1002/2015PA002818

    Article  Google Scholar 

  • Aubry MP (1992) Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 272–309

    Chapter  Google Scholar 

  • Backman J, Moran K (2009) Expanding the Cenozoic paleoceanographic record in the central Arctic Ocean: IODP Expedition 302 synthesis, Central European. J Geosci 1(2):157–175

    Google Scholar 

  • Backman J, Raffi I, Rio D, Fornaciari E, Palike H (2012) Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsl Stratigr 45:221–244. https://doi.org/10.1127/0078-0421/2012/0022

    Article  Google Scholar 

  • Bahrami M (2009) Microfacies and sedimentary environments of Gurpi and Pabdeh Formations in Southwest of Iran. Am J Appl Sci 6(7):1295–1300

    Article  Google Scholar 

  • Bains S, Norris R, Corfield R, Faul K (2000) Termination of global warmth at the Paleocene/Eocene boundary through productivity feedback. Nature 407(6801):171–174

  • Baumann KH (1995) Morphometry of quaternary Coccolithus pelagicus coccoliths from northern North Atlantic and its paleoceanographic significance. In: Flores JA, Javier Sierro F (eds) Proceedings of the 5th INA conference Salamanca. Universidad de Salamanca, p 11–21

  • Baumann KH, Young JR, Cachão M, Ziveri P (2000) Biometric study of Coccolithus pelagicus and its palaeoenvironmental utility. J Nannoplankton Res 22:82

    Google Scholar 

  • Behbahani R, Mohseni H, Khodabakhsh S, Atashmard Z (2010) Depositional environment of the Pabdeh Formation (Paleogene) elucidated from trace fossils, Zagros Basin, W Iran. In: 1st International applied geological congress, Iran, p 1004–1007

  • Berggren W, KentD Swisher III C, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.95.04.0129

    Article  Google Scholar 

  • Blaj T, Backman J, Raffi I (2009) Late Eocene to Oligocene preservation history and biochronology of calcareous nannofossils from paleo-equatorial Pacific Ocean sediments. Riv Ital Paleontol Stratigr 115(1):67–85

    Google Scholar 

  • Bohaty SM, Zachos JC (2003) A significant southern ocean warming event in the Late middle Eocene. Geology 31:1017–1020

    Article  Google Scholar 

  • Bordiga M, Henderiks J, Tori F, Monechi S, Fenero R, Legarda-Lisarri A, Thomas E (2015) Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge). Clim past 11:1249–1270. https://doi.org/10.5194/cp-11-1249-2015

    Article  Google Scholar 

  • Bordiga M, Sulas C, Henderiks J (2017) Reticulofenestra daviesii: Biostratigraphy and paleogeographic distribution across the Eocene–Oligocene boundary. Geobios 50:349–358. https://doi.org/10.1016/j.geobios.2017.07.002

    Article  Google Scholar 

  • Bown PR (2005) Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51:299–308

    Article  Google Scholar 

  • Bown PR, Dunkley-Jones T (2006) New Palaeogene calcareous nannofossil taxa from coastal Tanzania: Tanzania Drilling Project Sites 11 to 14. J Nannoplankton Res 28(1):17–34

    Google Scholar 

  • Bown PR, Young JR (1998) Techniques. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Academic Publishers, Dordrecht, pp 16–28

    Chapter  Google Scholar 

  • Bown PR, Lees JA, Young JR (2004) Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR (eds) Coccolithophores: From molecular processes to global impact. Springer, New York, pp 481–508

    Chapter  Google Scholar 

  • Bralower TJ (2002) Evidence of surface water oligotrophy during the Paleocene–Eocene thermal maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise. Weddell Sea Paleoceanography 17(2):1–12

    Google Scholar 

  • Bralower TJ (2005) Data report: Paleocene–Early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 (Shatsky Rise, Pasific Ocean). In: Bralower TJ, Premoli Silva I, Malone MJ (eds) Proceedings of the ocean drilling program scientific results, College Station, p 1–15

  • Brand LE (1994) Physiological Ecology of marine coccolithophores. In: Winter A, Sisser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 39–50

    Google Scholar 

  • Bukry D (1978). Low latitude coccolith biostratigraphic zonation. In: Edgar NT, Saunders JB, et al. (eds) Initial report DSDP, vol 15, p 685–703

  • Cappelli ELG, Clarke JL, Smeaton C, Davidson K, Austin WEN (2019) Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments. Biogeosciences 16:4183–4199. https://doi.org/10.5194/bg-16-4183-2019

    Article  Google Scholar 

  • Chira C, Igrit̡an A (2004) Eocene Oligocene calcareous nannofossils from Huedin area, between Hodis and Tetis (Transylvania, Romania): biostratigraphy and paleoecological data. Studia UBB Geol 49(2):109–127

    Article  Google Scholar 

  • Coxall HK, Pearson PN (2007) The Eocene-Oligocene transition, deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Geological Society, London, pp 351–387

    Book  Google Scholar 

  • Coxall HK, Wilson PA, Palike H, Lear CH, Backman J (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57. https://doi.org/10.1038/nature03135

    Article  Google Scholar 

  • Cunha AS, Shimabukuro S (1997) Braarudosphaera blooms and anomalous enrichments of nannoconus: evidence from the Turonian South Atlantic, Santos Basin, Brazil. J Nannoplankton Res 19(1):51–55

    Google Scholar 

  • Darvishzadeh A (1992) Geology of Iran. Amirkabir Publication Company, Tehran

    Google Scholar 

  • De Man E, Van Simaeys S, De Meuter F, King C, Steurbaut E (2004) Oligocene benthic foraminiferal zonation for the southern North Sea Basin. Bulletin de l'Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre 74:177–195

    Google Scholar 

  • Dunkley Jones T, Bown PR, Pearson PN, Wade BS, Coxall HK, Lear CH (2008) Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography 23(4):PA4204

    Article  Google Scholar 

  • Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang X (2007) Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445:635–638

    Article  Google Scholar 

  • Fioroni C, Villa G, Persico D, Jovane L (2015) Middle Eocene-Lower Oligocene calcareous nannofossil biostratigraphy and paleoceanographic implications from Site 711 (equatorial Indian Ocean). Mar Micropaleontol 118:50–62

    Article  Google Scholar 

  • Fornaciari E, Agnini C, Catanzariti R, Rio D, Bolla EM, Valvasoni E (2010) Mid- Latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition. Stratigraphy 7(4):229–264

    Google Scholar 

  • Foroughi F, Aryanasab MR (2018) Biostratigraphy and paleoecology of Calcareous nannofossils from upper Gurpi and base of Pabdeh formations in Kuh-e Gurpi anticline, Zagros Basin, SW of Iran for demonstration of Kp/g boundary. In: The 36th national and the 3th International Geosciences Congress, Tehran, Iran

  • Friedrich O, Herrle JO, Hemleben C (2005) Climatic changes in the late Campanian–Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. J Foraminiferal Res 35(3):228–247

    Article  Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238

    Article  Google Scholar 

  • Gibbs SJ, Shackleton NJ, Young JR (2004) Identification of dissolution patterns in nannofossil assemblages: a high-resolution comparison of synchronous records from Ceara Rise, ODP Leg 154. Paleoceanography 19(1):1029–1041

    Article  Google Scholar 

  • Gibbs SJ, Bralower TJ, Bown PR, Zachos JC, Bybell LM (2006) Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene–Eocene thermal maximum: implications for global productivity gradients. Geology 34(3):233–236

    Article  Google Scholar 

  • Goldner A, Herold N, Huber M (2014) Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511(7511):574–577. https://doi.org/10.1038/nature13597

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM et al (2012) The geological time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Gürsoy H, Tatar ORHAN, Piper JDA, Heimann A, Kocbulut FİKRET, Mesci BL (2009) Palaeomagnetic study of tertiary volcanic domains in Southern Turkey and Neogene anticlockwise rotation of the Arabian Plate. Tectonophysics 465(1–4):114–127. https://doi.org/10.1016/j.tecto.2008.11.001

    Article  Google Scholar 

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:44–64

    Google Scholar 

  • Heidary E, Hassanzadeh J, Wade WJ, Ghazi AM (2003) Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction, part 1, sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 193:405–423

    Article  Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium, agreement area. Am Assoc Petrol Geol Bull 49(12):2182–2245

    Google Scholar 

  • Kamali MR, Fathi Mobarakabad A, Mohsenian E (2006) Petroleum geochemistry and thermal modeling of Pabdeh Formation in Dezful Embayment. J Sci Univ Tehran 32(2):1–11

    Google Scholar 

  • Khavari Khorassani MP, Hadavi F, Ghasemi-Nejad E (2014a) Nannostratigraphy and paleoecology Pabdeh Formation in NW Zagros. Ilam Sect Paleontol 1(2):149–164

    Google Scholar 

  • Khavari Khorassani MP, Hadavi F, Ghasemi-Nejad E, Mousavi-Harami R (2014b) Biostratigraphy and paleoecological study of Pabdeh Formation in interior fars, Zagros Basin, Iran. Open J Geol 4:571–581

    Article  Google Scholar 

  • Khavari Khorassani MPK, Ghasemi-Nejad E, Wagreich M, Hadavi F et al (2015) Biostratigraphy and geochemistry of upper paleocene–lower eocene oceanic red beds from the Zagros mountains, SW Iran. Earth Sci Clim Change 6(8):302–310. https://doi.org/10.4172/2157-7617.1000302

    Article  Google Scholar 

  • Khosrowtehrani Kh (2008) Applied micropaleontology. Tehran University Press, Iran, Tehran

    Google Scholar 

  • Konno S, Harada N, Narita H, Jordan RW (2007) Living Braarudosphaera bigelowii (Gran and Braarud) Deflandre in the Bering Sea. J Nannoplankton Res 29(2):78–87

    Google Scholar 

  • Krhovský J, Adamová J, Hladíková J, Maslowská H (1992) Palaeo environmental changes across the Eocene/Oligocene boundary in the Ždánice and Pouzdřany Units (Western Carpathians, Czechoslovakia): The long–term trend and orbitally forced changes in calcareous nannofossil assemblages. In: Hamršmíd B, Young J (eds) Nannoplankton research. Proceedings of fourth INA conference, Prague, 1991, Knihovnička ZPN 14b, vol 2, p 105–187

  • Lang TH, Watkins DK (1984) Cenozoic calcareous nannofossils from Deep Sea Drilling Project Leg 77. In: Buffler RT, Schlager W et al (eds) Initial REPORTS DSDP, Washington (U.S. Govt. Printing Office), vol 11, p 629–648

  • Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272

    Article  Google Scholar 

  • Levy RH, Meyers SR, Naish TR, Golledge NR, McKay RM, Crampton JS, DeConto RM, De Santis L, Florindo F, Gasson EGW, Harwood DM, Luyendyk BP, Powell RD, Clowes C, Kulhanek DK (2019) Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat Geosci 12:132–137. https://doi.org/10.1038/s41561-018-0284-4

    Article  Google Scholar 

  • Lowery CM, Bown PR, Fraass AJ, Hull PM (2020) Ecological response of plankton to environmental change: thresholds for extinction. Annu Rev Earth Planet Sci 48:403–429. https://doi.org/10.1146/annurev-earth-081619-052818

    Article  Google Scholar 

  • Mahanipour A, Parandavar M, Aghanabati A (2013) Calcareous nannofossils biostratigraphy of the Cretaceous Paleogene boundary, southwest Iran. In: 9th International symposium on the cretaceous system, Ankara, Turkey, 1–5 September, p 43–44

  • Marino M, Flores JA (2002) Data report: calcareous nannofossil data from the Eocene to Oligocene, Leg 177, Hole 1090B. In: Gersonde R, Hodell DA Blum P (eds) Proceedings of the ocean drilling program, scientific results, College Station, TX (Ocean Drilling Program), vol 177, p 1–9. https://doi.org/10.2973/odp.proc.sr.177.115.2002

  • Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. In: Proceedings of the 2nd planktonic conference. Roma, Italy, p 739–785.

  • Mejía-Molina A, Flores JA, Torres Torres V, Sierro FJ (2008) Análisis bioestratigráfico mediante Nanofósiles Calcáreos para el Oligoceno-Mioceno medio del norte de Colombia. Sección de superficie del Arroyo Alférez. Colombia Revista Española De Micropaleontología 40:135–149

    Google Scholar 

  • Mejía-Molina A, Flores JA, Torres Torres V, Sierro FJ (2010) Distribution of calcareous nannofossils in Upper Eocene–Upper Miocene deposits from Northern Colombia and the Caribbean Sea. Rev Esp Micropaleontol 42(3):279–300

    Google Scholar 

  • Merico A, Tyrrell T, Wilson PA (2008) Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature 452(7190):979–982. https://doi.org/10.1038/nature06853

    Article  Google Scholar 

  • Mohseni H, Al-Aasm IS (2004) Tempestite deposits on a storm-influenced carbonate ramp: an example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran. J Pet Geol 27(2):163–178

    Article  Google Scholar 

  • Monechi S, Buccianti A, Gardin S (2000) Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis. Mar Micropaleontol 39:219–237

    Article  Google Scholar 

  • Motiei H (1993) Geology of Iran: stratigraphy of Zagros. Treatise on the geology of Iran. Geological Survey of Iran, Tehran

    Google Scholar 

  • Motiei H (1995) Petroleum geology of Zagros. Geological Survey of Iran, Tehran

    Google Scholar 

  • Nyerges A, Kocsis ÁT, Pálfy J (2020) Changes in calcareous nannoplankton assemblages around the Eocene–Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys). Hist Biol 33(4):1–14. https://doi.org/10.1080/08912963.2019.1705295

    Article  Google Scholar 

  • Okada H, Bukry D (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Mar Micropaleontol 5:321–325

    Article  Google Scholar 

  • Opdyke BN, Wilkinson BH (1988) Surface area control of shallow cratonic to deep marine carbonate accumulation. Paleoceanography 3(6):685–703

    Article  Google Scholar 

  • Oszczypko-Clowes M (2012) Paleoecology of the Upper Eocene—Lower Oligocene Malcov Basin based on the calcareous nannofossils: a case study of the Leluchów section (Krynica Zone, Magura Nappe, Polish Outer Carpathians). Geol Carpath 63:149–164

    Article  Google Scholar 

  • Pälike H et al (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488(7413):609–614. https://doi.org/10.1038/nature11360

    Article  Google Scholar 

  • Palumbo E, Flores JA, Perugia C, Petrillo Z et al (2013) Millennial scale coccolithophore paleoproductivity and surface water changes between 445 and 360ka (marine isotope stages 12/11) in the Northeast Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 383–384:27–41. https://doi.org/10.1016/j.palaeo.2013.04.024

    Article  Google Scholar 

  • Pearson PN, van Dongen BE, Nicholas CJ, Pancost R, Schouten S, Singano J, Wade BS (2007) Stable warm tropical climate through the Eocene Epoch. Geology 35:211–214. https://doi.org/10.1130/G23175A.1

    Article  Google Scholar 

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Perch-Nielsen K, Supko PR (2005) Nannofossil abundance of Hole 39–353 B. Publié Par PANGAEA.

  • Poag CW, Aubry M-P (1995) Upper Eocene impactites of the US east coast: depositional origins, biostratigraphic framework, and correlation. Palaios 10:16–43

    Article  Google Scholar 

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M (2004) Lithologic-paleogeographic maps of paratethys. Cour Forschungsinst Senck 250:1–46

    Google Scholar 

  • Rabbani J, Ghasemi-Nejad E, Ashori AR, Vahidinia M (2015) Quantitative palynostratigraphy and palaeoecology of Tethyan Paleocene–Eocene red beds in north of Zagros sedimentary basin, Iran. Arab J Geosci 8:827–838

    Article  Google Scholar 

  • Sadooni FN, Alsharhan AS (2019) Regional stratigraphy, facies distribution, and hydrocarbons potential of the Oligocene strata across the Arabian Plate and Western Iran. Carbonates Evaporites 34:1757–1770. https://doi.org/10.1007/s13146-019-00521-3

    Article  Google Scholar 

  • Scotese CR (2014) The PALEOMAP project PaleoAtlas for ArcGIS, version 2, volume 1, cenozoic plate tectonic, paleogeographic, and paleoclimatic reconstructions, maps 1–15, PALEOMAP Project, Evanston, IL

  • Self-Trail JM, Powars DS, Watkins DK, Wandless GA (2012) Calcareous nannofossil assemblage changes across the Paleocene–Eocene thermal maximum: evidence from a shelf setting. Mar Micropaleontol 92–93:61–80

    Article  Google Scholar 

  • Senemari S (2014) Diversity changes among calcareous nannofossil assemblages across the Paleocene/Eocene Boundary in the Zagros (Southwest Iran). J Tethys 2:45–54

    Google Scholar 

  • Senemari S, Foroghi F (2019) Calcareous nannofossil biostratigraphy of the Campanian-Danian interval, Gurpi Formation in the Zagros Basin Southwest Iran. Geopersia 9(2):251–264

    Google Scholar 

  • Speijer RP, Scheibner C, Stassen P, Morsi AMM (2012) Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J Earth Sci 105(1):6–16

    Google Scholar 

  • Tafi P, Amiri Bakhtiar H, Rezaei Roozbehani P, Akbari N (2011) Biostratigraphy of Asmari Formation based on Foraminifera in wells No. 41 and 121 of Pazanan Oilfield. In: The first national geological conference of Iran, Shiraz, https://civilica.com/doc/117733

  • Thierstein HR, Young JR (2004) Coccolithophores: from molecular processes to global impact. Springer, New York

    Book  Google Scholar 

  • Toffanin F, Agnini C, Rio D, Acton G, Westerhold T (2013) Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific). Mar Micropaleontol 59(1):69–82

    Google Scholar 

  • Tremolada F, Bralower TJ (2004) Nannofossil assemblage fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications. Mar Micropaleontol 52(1):107–116

    Article  Google Scholar 

  • Tremolada F, Erba E, Bralower TJ (2007) A review of calcareous nannofossil changes during the early Aptian oceanic anoxic event 1a and the Paleocene-Eocene thermal maximum: the influence of fertility, temperature, and pCO2. In: Monechi S, Coccioni R, Rampino MR (eds) Large ecosystem perturbations: causes and consequences. Geological Society of America Special Paper 424, pp 87–96

  • Villa G, Persico D (2006) Late Oligocene climatic changes: evidence from calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeogr Palaeoclimatol Palaeoecol 231:110–119

    Article  Google Scholar 

  • Villa G, Fioroni C, Pea L, Bohaty S, Persico D (2008) Middle Eocene–Late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar Micropaleontol 69:173–192

    Article  Google Scholar 

  • Wei W, Wise SW (1990) Biogeographic gradients of Middle Eocene–Oligocene calcareous nannoplankton in the South Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 79:29–61

    Article  Google Scholar 

  • Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 161–177

    Google Scholar 

  • Young JR, Bown PR, Lees JA (2014). Nannotax 3 website. International Nannoplankton Association, 21 Apr. 2014, URL: http://ina.tmsoc.org/Nannotax3.

  • Zachos JC, Kump LR (2005) Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global Planet Change 47:51–66. https://doi.org/10.1016/j.gloplacha.2005.01.00159

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412

Download references

Acknowledgements

The authors would like to thank Prof. Wolf-Christian Dullo, Dr. José Abel Flores and also anonymous reviewers for their helpful constructive, valuable comments and insightful suggestions. This work is a contribution of the research projects 751541 of the Imam Khomeini International University, Iran, the GGO (Grupo de Geociencias Oceánicas de la Universidad de Salamanca) of the University of Salamanca, Spain and the Terra Mare Research Group of the Universidad de Pamplona, Colombia.

Funding

(Research grant = 751541), Imam Khomeini International University, Qazvin, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Senemari.

Ethics declarations

Conflict of interest

Not applicable.

Code availability

Not applicable.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senemari, S., Mejía-Molina, A. Calcareous nannofossil biostratigraphy and paleoenvironment of the Eocene–Oligocene interval in the Pabdeh Formation in southwestern Iran. Int J Earth Sci (Geol Rundsch) 111, 1289–1305 (2022). https://doi.org/10.1007/s00531-022-02180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02180-7

Keywords

Navigation