Skip to main content
Log in

Enigmatic well-characterized remanent magnetization of silicified Lower Devonian rocks from the Tadrart area (Murzuq basin, SE Algeria)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

To improve the poor Gondwana paleomagnetic database for Devonian times, detailed paleomagnetic analyses were performed on red chert-like rocks and partly silicified paleosols within the Lower Devonian Ikniouen level (fine-grained sandstones including red ironstone) in conformity within the sub-horizontal Tadrart coarse white formations of the Murzuq basin. Silicification, limited to this level that is only a few meters thick, was probably due to tropical warm climatic conditions during and shortly after the rock deposition. In two sections 40 km away each other, paleomagnetic data point out a high-temperature Characteristic Remanent Magnetization (ChRM) with very well-defined mean direction, positive reversal test and relatively high (5) Q and R scores. Rock magnetic data indicate minerals of the hematite family, but the presence of a minor amount of other mineral phases remains possible. At least part of the ChRMs are Chemical Remanent Magnetizations, likely acquired during or shortly after deposition. The corresponding paleomagnetic results (paleomagnetic pole at 28.6° E and 71.1° S, with K = 1004, A95 = 1.5°) could have major geodynamical implications for the Gondwana supercontinent. In fact, ChRM acquired in this level during or shortly after deposition should imply a much-unexpected fast latitudinal continental drift of the Gondwana during the Lower Devonian or a significant and fast true polar wander. Though much more difficult to match with the ChRM and geological characteristics, the only possible alternative interpretation for the Ikniouen data should be a chemical remagnetization acquired during the Late Cretaceous–Early Paleocene times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The primary data of this paper have been archived at PANGAEA (http://www.pangaea.de).

Code availability

Not applicable.

References

  • Aïfa T (1993) Different styles of remagnetization in Devonian sediments from the northwestern Sahara (Algeria). Geophys J Int 115:529–537

    Article  Google Scholar 

  • Amenna M (2015) Applications du paléomagnétisme dans la bordure occidentale du bassin de Murzuq en Algérie. PhD thesis, U. S. T. H. B. University, Algiers

  • Amenna M, Derder MEM, Henry B, Maouche S, Bayou B, Bouabdallah H, Ayache M, Bediaf M (2014) Improved Moscovian part of the Gondwana APWP for paleocontinental reconstructions, obtained from a first paleomagnetic pole, age-constrained by a fold test, from In Ezzane area in the Murzuq basin (Algeria, stable Africa). J Afr Earth Sci 99:342–352. https://doi.org/10.1016/j.jafrearsci.2013.12.006

    Article  Google Scholar 

  • Amenna M, Derder MEM, Henry B, Maouche S, Bayou B, Ouabadi A, Bestandji R, Bouabdallah H, Ayache M, Beddiaf M (2017) Chemical remagnetization acquisition process: case study of the widespread Cenozoic remagnetization of the Saharan basins. Arab J Geosci 10:379. https://doi.org/10.1007/s12517-017-3165-z

    Article  Google Scholar 

  • As JA, Zijderveld JDA (1958) Magnetic cleaning of rocks in paleomagnetic research. Geophys J Roy Astron Soc 1:308–319

    Google Scholar 

  • Bardon C, Bossert A, Hamzeh R, Westphal M (1973) Etude paléomagnétique de formations du Trias et du Jurassique du Maroc et du Sahara. C R Acad Sci Paris 276:2357–2360

    Google Scholar 

  • Beck ME, Burmester RF, Housen BA (2003) The red bed controversy revisited: shape analysis of Colorado Plateau units suggests long magnetization times. Tectonophysics 362:335–344. https://doi.org/10.1016/s0040-1951(02)00644-3

    Article  Google Scholar 

  • Bellini E, Massa D (1980) Stratigraphic contribution to the Palaeozoic of Southern basins of Libya. In: Salem MJ, Busrewil MT (eds) Geology of Libya (I). Academic Press, London, pp 2–56

    Google Scholar 

  • Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res 107:2300. https://doi.org/10.1029/2000JB000050

    Article  Google Scholar 

  • Carte Géologique du Nord-Ouest de l’Afrique – Sahara Central” (1962) Centre National de la Recherche scientifique, Paris

  • Clark DA (1996) Palaeomagnetism of the Mount Leyshon intrusive complex, the Tuckers igneous complex and the Ravenwood Batholith. CSIRO Australian Exploration Mining Report, 318R

  • Daly L, Irving E (1983) Paléomagnétisme des roches carbonifères du Sahara central; analyse des aimantations juxtaposées; configurations de la Pangée. Ann Geophys 1:207–216

    Google Scholar 

  • De Boer CB, Mullender TAT, Dekkers MJ (2001) Low-temperature behaviour of haematite: susceptibility and magnetization increase on cycling through the Morin transition. Geophys J Int 146:201–216

    Article  Google Scholar 

  • Deenen MH, Langereis CG, van Hinsbergen DJ, Biggin AJ (2011) Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys J Int 186:509–520

    Article  Google Scholar 

  • Deenen MH, Langereis CG, van Hinsbergen DJ, Biggin AJ (2014) Erratum: Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys J Int 197:643. https://doi.org/10.1093/gji/ggu021

    Article  Google Scholar 

  • Deng C, Liu Q, Wang W, Liu C (2007) Chemical overprint on the natural remanent magnetization of a subtropical red soil sequence in the Bose Basin, southern China. Geophys Res Lett 34:L22308. https://doi.org/10.1029/2007GL031400

    Article  Google Scholar 

  • Derder MEM, Henry B, Bayou B, Djellit H, Amenna M (2001a) New Moscovian paleomagnetic pole from the Edjeleh fold (Saharan craton, Illizi basin, Algeria). Geophys J Int 147:343–355

    Article  Google Scholar 

  • Derder MEM, Henry B, Merabet N, Amenna M (2001b) New Liassic-Dogger paleomagnetic pole from the Middle Zarzaîtine formation (stable Saharan craton, Illizi basin, Algeria). Annali Geofisica 44:995–1010

    Google Scholar 

  • Derder MEM, Maouche S, Liégeois JP, Henry B, Amenna M, Ouabadi A, Bellon H, Bruguier O, Bayou B, Bestandji R, Nouar O, Bouabdallah H, Ayache M, Beddiaf M (2016) Discovery of a Devonian mafic magmatism on the western border of the Murzuq basin (Saharan metacraton): paleomagnetic dating and geodynamical implications. J Afr Earth Sci 115:159–176. https://doi.org/10.1016/j.afreasci.2015.11.019

    Article  Google Scholar 

  • Derder MEM, Henry B, Maouche S, Merabet NE, Amenna M, Bayou B (2019) Paleomagnetism of the Western Saharan basins: an overview. In: Bendaoud A, Hamimi Z, Hamoudi M, Djemal S, Zoheir B (eds) Geology of the Arab world. An overview. Springer, Cham, pp 291–318. https://doi.org/10.1007/978-3-319-96794-3_7

    Chapter  Google Scholar 

  • Derder MEM, Maouche S, Missenard Y, Henry B, Amenna M, Ouabadi A, Bayou B, Bestandji R, Kettouche J, Haddoum H (2020) Paleomagnetic dating of the “Serouenout” sedimentary cover in the NE Hoggar shield (Algeria): Stratigraphic and structural implications. In: 3nd Conf of Arab J Geosci, Sousse, Tunisia. 2–5 Nov 2020

  • Domeier M, Van der Voo R, Torsvik TH (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics 514–517:14–43

    Article  Google Scholar 

  • Elmore RD, Muxworthy AR, Aldana M (2012) Remagnetization and chemical alteration of sedimentary rocks. Geo Soc London Spec Pub 371:1–21

    Article  Google Scholar 

  • Elston DP, Purucker ME (1979) Detrital magnetization in red beds of the Moenkopi formation (Triassic), Gray Mountain, Arizona. J Geophys Res 84:1653–1665

    Article  Google Scholar 

  • Embleton BJJ, McElhinny MW (1975) The palaeoposition of Madagascar: Palaeomagnetic evidence from the Isalo group. Earth Planet Sci Lett 27:329–341

    Article  Google Scholar 

  • Evans DAD (1998) True polar wander, a supercontinental legacy. Earth Planet Sci Lett 157:1–8

    Article  Google Scholar 

  • Evans DAD (2003) True polar wander and supercontinents. Tectonophysics 362:303–320

    Article  Google Scholar 

  • Evans DAD, Beukes NJ, Kirschvink JL (2002) Paleomagnetism of a lateritic paleoweathering horizon and overlying Paleoproterozoic red beds from South Africa: Implications for the Kaapvaal apparent polar wander path and a confirmation of atmospheric oxygen enrichment. J Geophys Res 107(B12):2326. https://doi.org/10.1029/2001JB000432

    Article  Google Scholar 

  • Fabre J (1983) Afrique de l’Ouest. Pergamon, Introduction géologique et termes stratigraphiques, p 396

    Google Scholar 

  • Fezaa N, Liégeois JP, Abdallah N, Cherfouh EH, De Waele B, Bruguier O, Ouabadi A (2010) The Djanet terrane (Eastern Hoggar, Algeria), the Pan-African metacratonic boundary of the Murzuq craton: field, detrital and magmatic U-Pb zircon and Sr-Nd isotopes evidences. Precamb Res 180:299–327

    Article  Google Scholar 

  • Fisher RA (1953) Dispersion on a sphere. Proc Roy Soc Lond A 217:295–305

    Article  Google Scholar 

  • Freulon JM (1964) Etudes géologiques des séries primaires du Sahara Central (Tassili n’Ajjer et Fezzan). Publ. du centre de Recherche Sahariennes (CNRS). Serv Géol Algér 3:1–198

    Google Scholar 

  • Fu RR, Kent DV, Hemming SR, Gutiérrez P, Creveling JR (2020) Testing the occurrence of Late Jurassic true polar wander using the La Negra volcanics of northern Chile. Earth Planet Sci Lett 529:115835. https://doi.org/10.1016/j.epsl.2019.115835

    Article  Google Scholar 

  • Ghienne JF, Moreau J, Degermann L, Rubino JL (2013) Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya). Int J Earth Sci 102:455–482

    Article  Google Scholar 

  • Gold T (1955) Instability of the Earth’s axis of rotation. Nature 175:526–529

    Article  Google Scholar 

  • Goodhart C (1955) Instability of the Earth’s Axis. Nature 176:349

    Article  Google Scholar 

  • Greff-Lefftz M, Besse J (2014) Sensitivity experiments on True Polar Wander. Geochem Geophys 15:4599–4616. https://doi.org/10.1002/2014GC005504

    Article  Google Scholar 

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central African: an overview. J Afr Earth Sci 43:83–143

    Article  Google Scholar 

  • Hargraves RB, Dawson EM, Houten FB (1987) Palaeomagnetism and age of mid-Palaeozoic ring complexes in Niger, West Africa, and tectonic implications. Geophys Roy Astron l Soc 90:705–729. https://doi.org/10.1111/j.1365-246X.1987.tb00750.x

    Article  Google Scholar 

  • Hargraves RB, Briden JC, Daniels BA (1999) Palaeomagnetism and magnetic fabric in the Freetown Complex, Sierra Leone. Geophys J Int 136:705–713

    Article  Google Scholar 

  • Hawkins LMA, Grappone J, Sprain C, Saengduean P, Sage E, Thomas-Cunningham S, Kugabalan B, Biggin A (2020) Intensity of the Earth’s magnetic field: evidence for a Mid-Paleozoic dipole low. Earth Space Sci Open Archive. https://doi.org/10.1002/essoar.10504053.1

    Article  Google Scholar 

  • Henry B, Merabet N, Yelles A, Derder MM, Daly L (1992) Geodynamical implications of a Moscovian paleomagnetic pole from the stable Saharan craton (Illizi basin, Algeria). Tectonophysics 201:83–96

    Article  Google Scholar 

  • Henry B, Merabet N, Derder MEM, Bayou B (2004) Chemical remagnetizations in the Illizi basin (Saharan craton, Algeria). Geophys J Int 156:200–212

    Article  Google Scholar 

  • Henry B, Derder MEM, Amenna M, Maouche S, Bayou B, Ouabadi A, Bouabdallah H, Ayache M, Beddiaf M, Bestandji R (2014) Paleomagnetic dating of continental geological formations: strong diachronism evidenced in the Saharan platform and geodynamical implications. J Afr Earth Sci 99:353–362. https://doi.org/10.1016/j.jafrearsci.2014.02.010

    Article  Google Scholar 

  • Henry B, Derder MEM, Amenna M, Maouche S, Bayou B (2017) Better constrained selection of the Paleozoic West Gondwana (South America) paleomagnetic poles for the APWP’s determination. Stud Geophys Geod 61:185–198. https://doi.org/10.1007/s11200-016-1036-9

    Article  Google Scholar 

  • Hodych JP, Pätzold RR, Buchan KL (1984) Paleomagnetic dating of the transformation of oolitic goethite to hematite in iron ore. Can J Earth Sci 21:127–130

    Article  Google Scholar 

  • Hodych JP, Pätzold RR, Buchan KL (1985) Chemical remanent magnetization due to deepburial diagenesis in oolitic hematite-bearing ironstones of Alabama. Phys Earth Planet Inter 37:261–284

    Article  Google Scholar 

  • Huang W, Jackson MJ, Dekkers MJ, Solheid P, Zhang B, Guo Z, Ding L (2019) Nanogoethite as a potential indicator of remagnetization in red beds. Geophys Res Lett. https://doi.org/10.1029/2019GL084715

    Article  Google Scholar 

  • Huang W, Jackson MJ, Dekkers MJ, Solheid P, Zhang Y, Li S, Guo Z, Ding L (2020) Remagnetization of red beds on the Tibetan Plateau: mechanism and diagnosis. JGR Solid Earth 125:e2020JB020068

    Google Scholar 

  • Iglesia-Llanos MP, Riccardi AC, Singer SE (2006) Paleomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic apparent polar wander path for South America. Earth Planet Sci Lett 252:379–397

    Article  Google Scholar 

  • Jiang Z, Liu Q, Dekkers MJ, Tauxe L, Qin H, Barrón V, Torrent J (2015) Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field—implications for paleomagnetic studies of red beds. Earth Planet Sci Lett 428:1–10. https://doi.org/10.1016/j.epsl.2015.07.024

    Article  Google Scholar 

  • Johnson SA, Turner P, Hartley A, Rey D (1995) Palaeomagnetic implications for the timing of hematite precipitation and remagnetization in the Carboniferous Barren Red Measures, UK southern North Sea. Geol Soc London, Special Publications 98:97–117

    Article  Google Scholar 

  • Jordanova N (2016) Soil magnetism. Application in pedology, environmental science and agriculture. Elsevier Academic Press, Cambridge, p 466

    Google Scholar 

  • Kämpf V, Schwertmann U (1982) Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction. Clay Miner 17:359–363

    Article  Google Scholar 

  • Kies B, Henry B, Merabet N, Derder MEM, Daly L (1995) A new Late Triassic - Liasic palaeomagnetic pole from superimposed and juxtaposed magnetizations in the Saharan craton. Geophys J Int 120:433–444

    Article  Google Scholar 

  • Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62:699–718

    Article  Google Scholar 

  • Kodama KP, Dekkers MJ (2004) Magnetic anisotropy as an aid to identifying CRM and DRM in red sedimentary rocks. Stud Geophys Geod 48:747–766

    Article  Google Scholar 

  • Kozlowska M (2019) Paleosols and their sedimentary setting in Old Red succession of Podolia, Ukraine. Palaeogeogr Palaeoclimat Palaeoecol 514:45–64

    Article  Google Scholar 

  • Kraus MJ (1999) Paleosols in clastic sedimentary rocks: their geologic applications. Earth Sci Rev 47:41–70

    Article  Google Scholar 

  • Kumar P, Yuan X, Kumar MR, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897. https://doi.org/10.1038/nature06214

    Article  Google Scholar 

  • Lamali A, Merabet NE, Henry B, Maouche S, Hamoudi M, Ayache M (2014) Réaimantations énigmatiques des formations du Silurien et du Dévonien inférieur du Tassili N-Ajjer (Bassin d’Illizi, Algérie). Bull Serv Géol Natl Algér 25:181–199

    Google Scholar 

  • Larson EE, Walker TR (1975) Development of chemical remanent magnetization during early stages of Red-Bed formation in Late Cenozoic Sediments, Baja California. Bull Geol Soc Am 86:639–650

    Article  Google Scholar 

  • Larson E, Walker T, Patterson P, Hoblitt R, Rosenbaum J (1982) Paleomagnetism of the Moenkopi Formation, Colorado Plateau: basis for long-term model of acquisition of chemical remanent magnetism in red beds. J Geophys Res 87:1081–1106

    Article  Google Scholar 

  • Le Pichon X (1970) Correction to Paper by Xavier Le Pichon “Sea-Floor Spreading and Continental Drift.” J Geophys Res Atmos 75(14):2793–2793. https://doi.org/10.1029/JB075i014p02793

    Article  Google Scholar 

  • Le Goff M, Henry B, Daly L (1992) Practical method for drawing VGP paths. Phys Earth Planet Inter 70:201–204

    Article  Google Scholar 

  • Lewchuk MT, Elmore D, Evans M (2002) Remagnetization signature of Paleozoic sediments from the Patterson Creek anticline in West Virginia. Phys Chem Earth 27:1141–1150

    Article  Google Scholar 

  • Liégeois JP (2019) A New Synthetic Geological Map of the Tuareg Shield: an overview of its global structure and geological evolution. In: Bendaoud A, Hamimi Z, Hamoudi M, Djemal S, Zoheir B (eds) Geology of the Arab World. an overview. Springer, Cham, pp 83–107. https://doi.org/10.1007/978-3-319-96794-3_2

    Chapter  Google Scholar 

  • Liégeois JP, Latouche L, Boughrara M, Navez J, Guiraud M (2003) The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. J Afr Earth Sci 37:161–190

    Article  Google Scholar 

  • Liégeois JP, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B (2005) The Hoggar swell and volcanism: Reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms, vol 388. Geol Soc Am Spec Pap, pp 379–400

  • Løvlie R (1979) Mesozoic palaeomagnetism in Vestfjella, Dronning Maud Land, East Antarctica. Geophys J Int 59:529–537

    Article  Google Scholar 

  • MacDonald WD, Opdyke ND (1974) Triassic paleomagnetism of northern South America. Am Assoc Petrol Bull 58:208–215

    Google Scholar 

  • Martin DL, Nairn AEM, Noltimier HC, Petty MH, Schmidt TJ (1978) Paleozoic and Mesozoic paleomagnetic results from Morocco. Tectonophysics 44:91–114

    Article  Google Scholar 

  • McFadden PL, McElhinny MW (1990) Classification of the reversal test in palaeomagnetism. Geophys J Int 103:725–729

    Article  Google Scholar 

  • Meert JG (1999) A paleomagnetic analysis of Cambrian true polar wander. Earth Planet Sci Lett 168:131–144

    Article  Google Scholar 

  • Meert JG, Pivarunas A, Evans D, Pisarevsky S, Pesonen L, Li Z, Elming S, Scott RM, Zhang S, Salminen J (2020) The magnificent seven: a proposal for modest revision of the quality index. Tectonophysics 790:228549. https://doi.org/10.1016/j.tecto.2020.228549

    Article  Google Scholar 

  • Millot G, Perriaux J, Lucas J (1961) Signification climatique de la couleur rouge des grès permo-triasiques et des grands séries détritiques rouges. Bull Serv Carte Géol Als Lorr 14:91–100

    Article  Google Scholar 

  • Mitchell RN, Thissen CJ, Evans DAD, Slotznick SP, Coccioni R, Yamazaki T, Kirschvink JL (2021) A Late Cretaceous true polar wander oscillation. Nat Commun 12:3629. https://doi.org/10.1038/s41467-021-23803-8

    Article  Google Scholar 

  • Montes-Lauar CR, Pacca IG, Melfi AJ, Piccirillo EM, Bellieni G (1994) The Anari and Tapirapuã Jurassic formations, western Brazil: paleomagnetism, geochemistry and geochronology. Earth Planet Sci Lett 128:357–371

    Article  Google Scholar 

  • Moreau C, Demaiffe D, Bellion Y, Boullier AM (1994) A tectonic model for the location of Paleozoic ring-complexes in Aïr (Niger, West Africa). Tectonophysics 234:129–146

    Article  Google Scholar 

  • Moreau J, Ghienne JF, Hurst A (2012) Kilometre-scale sand injectites in the intracratonic Murzuq Basin (south-west Libya): an igneous trigger? Sedimentology 59:1321–1344

    Article  Google Scholar 

  • Nomade S, Théveniaut H, Chen Y, Pouclet A, Rigollet C (2000) Paleomagnetic study of French Guyana Early Jurassic dolerites: hypothesis of a multistage magmatic event. Earth Planet Sci Lett 184:155–168

    Article  Google Scholar 

  • Ostrander JH (1971) Paleomagnetic investigations of the Queen Alexandria Range, Antarctica. Antarct J US 6:183–185

    Google Scholar 

  • Palencia-Ortas A, Ruiz-Martınez VC, Villalaın JJ, Osete ML, Vegas R, Touil A, Hafid A, McIntosh G, van Hinsbergen DJJ, Torsvik TH (2011) A new 200 Ma paleomagnetic pole for Africa, and paleo-secular variation scatter from Central Atlantic Magmatic Province (CAMP) intrusives in Morocco (Ighrem and Foum Zguid dykes). Geophys J Int 185:1220–1234

    Article  Google Scholar 

  • Rapalini AE, Vilas JF (1991) Preliminary paleomagnetic data from the Sierra Grande Formation: tectonic consequences of the first mid-Paleozoic paleopoles from Patagonia. J S Am Earth Sci 4:25–41

    Article  Google Scholar 

  • Rouby H, Greff-Lefftz M, Besse J (2010) Mantle dynamics, geoid, inertia and TPW since 120 Ma. Earth Planet Sci Lett 292(3–4):301–311

    Article  Google Scholar 

  • Rougier S, Missenard Y, Gautheron C, Barbarand J, Zeyen H, Liégeois JP, Bonin B, Ouabadi A, El-Messaoud Derder M, Frizon de lamotte D (2013) Eocene exhumation of the Tuareg Shield (Sahara Africa). Geology. https://doi.org/10.1130/G33731.1

    Article  Google Scholar 

  • Rouvier H, Henry B, Macquar JC, Leach D, Le Goff M, Thibieroz J, Lewchuk MT (2001) Réaimantation régionale éocène, migration de fluides et minéralisations dans la bordure cévenole. Bull Soc Géol France 172:503–516

    Article  Google Scholar 

  • Roy JL, Park JK (1972) Red beds: DRM or CRM? Earth Planet Sci Lett 17:211

    Article  Google Scholar 

  • Schaetzl R, Anderson S (2005) Soils. Genesis and geomorphology. Cambridge University Press, Cambridge, p 817

    Book  Google Scholar 

  • Schmidt PW, Williams GE (1999) Paleomagnetism of the Paleoproterozoic hematitic breccia and paleosol at Ville-Marie, Québec: further evidence for the low paleolatitude of Huronian glaciation. Earth Planet Sci Let 172:273–285

    Article  Google Scholar 

  • Schmidt PW, Embleton BJJ, Palmer HC (1987) Pre- and post-folding magnetizations from the early Devonian Snowy River Volcanics and Buchan Caves Limestone, Victoria. Geophys J Int 91:155–170

    Article  Google Scholar 

  • Shcherbakova VV, Biggin AJ, Veselovskiy RV, Shatsillo AV, Hawkins MA, Shcherbakov VP, Zhidov GV (2017) Was the Devonian geomagnetic field dipolar or multipolar? Palaeointensity studies of Devonian igneous rocks from the Minusa Basin (Siberia) and the Kola Peninsula dykes, Russia. Geophys J Int 209:1265–1286

    Article  Google Scholar 

  • Sierra-Rojas MI, Molina Garza R (2018) Detrital and Early Chemical Remanent Magnetization in redbeds and their rock magnetic signature: Zicapa Formation, southern Mexico. Geophys J Int 213:1701–1719. https://doi.org/10.1093/gji/ggy076

    Article  Google Scholar 

  • Symons DTA, Pan H, Sangster DF, Jowett EC (1993) Paleomagnetism of the Pine Point Zn-Pb deposits. Can J Earth Sci 30:1028–1036

    Article  Google Scholar 

  • Tauxe L, Kent DV (1984) Properties of a detrital remanence carried by haematite from study of modern river deposits and laboratory redeposition experiments. Geophys J Int 76:543–561

    Article  Google Scholar 

  • Tauxe L, Opdyke N (1982) A time framework based on magnetostratigraphy for the Siwalik sediments of the Khaur area, Northern Pakistan. Palaeogeogr Palaeoclimat Palaeoecol 37:1–15

    Article  Google Scholar 

  • Till JL, Guyodo Y, Lagroix F, Morin G, Ona-Nguema G (2015) Goethite as a potential source of magnetic nanoparticles in sediments. Geology 43:75–78

    Article  Google Scholar 

  • Torsvik TH, van der Voo R, Preeden U, Mac NC, Steinberger B, Doubrovine PV, van Hinsbergen DJJ, Domeier M, Gaina C, Tohver E, Meert JG, McCausland PJA, Cocks LRM (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth Sci Rev 114:325–368. https://doi.org/10.1016/j.earscirev.2012.06.007

    Article  Google Scholar 

  • Van der Voo R (1990) The reliability of paleomagnetic data. Tectonophysics 184:1–9

    Article  Google Scholar 

  • Van der Voo R (1994) True polar wander during the middle Paleozoic? Earth Planet Sci Lett 122:239–243

    Article  Google Scholar 

  • Van Der Voo R, Torsvik TH (2012) The history of remagnetization of sedimentary rocks: deceptions, developments and discoveries. Geol Soc London Spec Publicat 371:23–53. https://doi.org/10.1144/SP371.2

    Article  Google Scholar 

  • Wensink H (1968) Paleomagnetism of some Gondwana red beds from Central India. Palaeogeogr Palaeoelimatol Palaeoecol 5:323–343

    Article  Google Scholar 

  • Yahiaoui R, Dautria JM, Alard O, Bosch D, Azzouni-Sekkal A, Bodinier JL (2014) A volcanic district between the Hoggar uplift and the Tenere Rifts: Volcanology, geochemistry and age of the In-Ezzane lavas (Algerian Sahara). J Afr Earth Sci 92:14–20

    Article  Google Scholar 

  • Zijderveld JDA (1967) AC demagnetisation of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Method in paleomagnetism. Elsevier, Amsterdam, pp 254–286

    Google Scholar 

Download references

Acknowledgements

The Algerian–French PICS cooperation program «Architecture lithosphérique et dynamique du manteau sous le Hoggar» supported this project. We are grateful to the civil and military authorities at Djanet and to the "Office du Parc National du Tassili"—OPNT (now "Office National du Parc Culturel du Tassili N'Ajjer"—ONPCTA) for help during the fieldwork. Jean Besse and Neli Jordanova are thanked for very constructive discussions and Christopher Day for strong improvement of the manuscript. We are grateful to Renata Tomezzoli, Andy Biggin, and Eduard Petrovský for constructive comments on a preliminary version of this paper and to two anonymous reviewers for the present version.

Funding

The Algerian–French PICS cooperation program «Architecture lithosphérique et dynamique du manteau sous le Hoggar» supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. M. Derder.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derder, M.E.M., Henry, B., Maouche, S. et al. Enigmatic well-characterized remanent magnetization of silicified Lower Devonian rocks from the Tadrart area (Murzuq basin, SE Algeria). Int J Earth Sci (Geol Rundsch) 111, 1185–1200 (2022). https://doi.org/10.1007/s00531-022-02173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02173-6

Keywords

Navigation