Skip to main content
Log in

Continental growth during Devono-Carboniferous switching accretionary tectonics: the Katebasu granitoid stock, Central Tianshan, NW China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Central Asian Orogenic Belt (CAOB) records a critical stage of Phanerozoic continental growth directly related to substantial juvenile additions during accretionary orogenesis. However, the processes and mechanisms of how juvenile continental growth remain controversial. The Central Tianshan Block (CTB) is a crucial part of the Tianshan orogenic belt. It was involved in the subduction—accretion of the western Paleo-Asian Ocean and the final amalgamation of the Tianshan Orogen in the southwestern CAOB. Multiphase late Paleozoic magmatism is recorded in the Katebasu district, forming one of the most critical granitoid stocks that host significant gold mineralization (i.e., Katebasu Au deposit, 89 t Au @ 2.7 g/t) in the CTB. Based on our new U–Pb ages, geochemical and Sr–Nd–Hf isotopic systematics, in combination with previously published datasets from the adjacent regions, we propose that the Katebasu granitoid stock records the regional tectonic switching from compression to extension of the CTB during the Devonian to Early Carboniferous. The compressional tectonic regime produced extensive juvenile granitoid crust. In contrast, subsequent extensional setting was probably related to slab rollback that may have triggered incremental involvement of juvenile mantle components in producing additional continental crust. Such a tectonic model probably plays an important role in the tectonic evolution and crustal growth of the CTB during the late Paleozoic. On a larger scale, such a long-term “rejuvenation” process probably plays a significant role in the generation of widespread juvenile magmatism and continental growth during the formation of the CAOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

modified from Zhao et al. 2019). Location for A–A′

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexeiev DV, Kroner A, Hegner E, Rojas-Agramonte Y, Biske YS, Wong J, Geng HY, Ivleva EA, Muhlberg M, Mikolaichuk AV, Liu D (2016) Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: from arc-continent collision to subsequent evolution of a Paleozoic continental margin. Gondwana Res 39:261–291

    Article  Google Scholar 

  • Alexeiev DV, Cook HE, Djenchuraeva AV, Mikolaichuk AV (2017) The stratigraphic, sedimentological and structural evolution of the southern margin of the Kazakhstan continent in the Tien Shan Range during the Devonian to Permian. In: Brunett MF, McCann T, Sobel ER (eds) Geological evolution of Central Asian Basins and the Western Tien Shan Range: Geological Society of London, vol 427, pp 231–269

  • Arndt NT, Jenner GA (1986) Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chem Geol 56:229–255

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626

    Article  Google Scholar 

  • Biske YS, Seltmann R (2010) Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Res 17:602–613

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J 25:261–270

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Bull Geol Soc Am 125:1079–1113

    Article  Google Scholar 

  • Cao YC, Wang B, Jahn BM, Cluzel D, Shu LS, Zhong LL (2017) Late Paleozoic arc magmatism in the southern Yili Block (NW China): insights to the geodynamic evolution of the Balkash-Yili continental margin. Central Asian Orogenic Belt Lithos 278–281(111):125

    Google Scholar 

  • Cao R, Bagas L, Chen B, Wang ZQ, Gao YB (2021) Geochronology and petrogenesis of the composite Zuluhong Granite, North Xinjiang Province of China: Implications for the crust-mantle interaction and continental crustal growth in Western Tianshan Orogen. Lithos 380–381:105837

    Article  Google Scholar 

  • Cawood PA, Kroner A, Pisarevsky S (2006) Precambrian plate tectonics: criteria and evidence. GSA Today 16:4–11

    Article  Google Scholar 

  • Cawood PA, Kroner A, Collins W, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. Geo Soc Lond Spec Publ 318:1–36

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Charvet J, Shu LS, Laurent-Charvet S (2007) Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates. Episodes 30:162–186

    Google Scholar 

  • Charvet J, Shu LS, Laurent-Charvet S, Wang B, Faure M, Cluzel D, Chen Y, Jong K (2011) Palaeozoic tectonic evolution of the Tianshan belt, NW China. China Earth Sci 54:166–184

    Article  Google Scholar 

  • Collins WJ (1998) Evaluation of petrogenetic models for Lachlan Fold Belt granitoid: implications for crustal architecture and tectonic models. J Geol Soc Aust 45:483–500

    Google Scholar 

  • Collins WJ, Belousova EA, Kemp AIS, Murphy JB (2011) Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat Geosci 4:333–337

    Article  Google Scholar 

  • Cullen JT, Field MP, Sherrell RM (2001) Determination of trace elements in filtered suspended marine particulate material by sector field HR-ICP-MS. J Analtom Spectrom 16:1307–1312

    Article  Google Scholar 

  • Depaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  • Dolgopolova A, Seltmann R, Konopelko D, Biske YS, Shatov V, Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaev F (2017) Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U–Pb SHRIMP geochronology and Sr–Nd–Pb–Hf isotope mapping of granitoids. Gondwana Res 47:76–109

    Article  Google Scholar 

  • Dong YP, Zhang GW, Neubauer F, Liu XM, Hauzenberger C, Zhou DW, Li W (2011) Syn- and post-collisional granitoid in the Central Tianshan orogen: geochemistry, geochronology and implications for tectonic evolution. Gondwana Res 20:568–581

    Article  Google Scholar 

  • Dong LL, Wan B, Yang WZ, Deng C, Chen ZY, Yang L, Cai KD, Xiao WJ (2016) Rb-Sr geochronology of single gold-bearing pyrite grains from the Katebasu gold deposit in the South Tianshan, China and its geological significance. Ore Geol Rev 100:99–110

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoid: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Feng B, Xue CJ, Zhao XB, Ding ZX, Zhang Q, Zu B, Yang WZ, Lin ZH, Chen W (2014) Petrology, geochemistry and zircon U-Pb isotope chronology of monzogranite of the Katebasu Au–Cu deposit, western Tianshan, Xinjiang Province. Earth Sci Front 21:187–195 (in Chinese with English abstract)

    Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gao J, Klemd R (2003) Formation of HP–LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos 66:1–22

    Article  Google Scholar 

  • Gao J, Li MS, Xiao XC, Tang YQ, He GQ (1998) Paleozoic tectonic evolution of the Tianshan Orogen, northern China. Tectonophysics 287:213–231

    Article  Google Scholar 

  • Gao J, Long LL, Klemd R, Qian Q, Liu DY, Xiong XM, Su W, Liu W, Wang YT, Yang FQ (2009a) Tectonic evolution of the South Tianshan orogeny and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. Int J Earth Sci 98:1221–1238

    Article  Google Scholar 

  • Gao J, Qian Q, Long LL, Zhang X, Li JL, Su W (2009b) Accretionary orogenic process of Western Tianshan, China. Geol Bull China 28:1804–1816 (in Chinese with English abstract)

    Google Scholar 

  • Ge RF, Zhu WB, Wilde SA, He JW, Cui X, Wang X, Zheng BH (2014) Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 33:2013TC003501

    Article  Google Scholar 

  • Gibson IL, Kirkpatrick RJ, Emmerman R, Schmincke HU, Pritchard G, Oakley PJ, Thorpe RS, Marriner GF (1982) The trace element composition of the lavas and dikes from a 3-km vertical section through the lava pile of Eastern Iceland. J Geophys Res 87:6532–6546

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin

    Book  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTs: a modified calibration of MELTs optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Article  Google Scholar 

  • Han YG, Zhao GC (2018) Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the Paleo-Asian Ocean. Earth Sci Rev 186:129–152

    Article  Google Scholar 

  • Han BF, He GQ, Wang XC, Guo ZJ (2011) Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth Sci Rev 109:74–93

    Article  Google Scholar 

  • Hegner E, Klemd R, Kröner A, Corsini M, Alexeiev DV, Iaccheri LM, Zack T, Dulski P, Xia X, Windley BF (2010) Mineral ages and P–T conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the South Tianshan orogen of Kyrgyzstan. Am J Sci 310:916–950

    Article  Google Scholar 

  • Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry 53(1):27–62

  • Hu AQ, Jahn BM, Zhang GX, Chen YB, Zhang QF (2000) Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328:15–51

    Article  Google Scholar 

  • Huang G, Zhang ZW, Dong ZH, Zhang WF (2011) Zircon LA-ICP-MS U–Pb age of plagiogranite from Tonghuashan ophiolite in Southern Tianshan Mountains and its geological implications. Geol China 38:102–107 (in Chinese with English abstract)

    Google Scholar 

  • Huang Z, Long X, Kroner A, Yuan C, Wang Q, Sun M, Zhao GC, Wang YJ (2013) Geochemistry, zircon U–Pb ages and Lu–Hf isotopes of early Paleozoic plutons in the northwest Chinese Tianshan: petrogenesis and geological implications. Lithos 182–183:48–66

    Article  Google Scholar 

  • Huang ZY, Long XP, Yuan C, Sun M, Wang YJ, Zhang YY, Chen B (2016) Detrital zircons from Neoproterozoic sedimentary rocks in the Yili Block: constraints on the affinity of microcontinents in the southern Central Asian Orogenic Belt. Gondwana Res 37:39–52

    Article  Google Scholar 

  • Huang H, Wang T, Tong Y, Qin Q, Ma XX, Yin JY (2020) Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt. Earth Sci Rev 208:103–255

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Article  Google Scholar 

  • Jiang T, Gao J, Klemd R, Qian Q, Zhang X, Xiong XM, Wang XS, Tan Z, Chen BX (2014) Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: geological, geochemical and geochronological implications for the geodynamic setting. Tectonophysics 612–613:106–127

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL, EIMF (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284:455–466

    Article  Google Scholar 

  • Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125

  • Kröner A, Kovach V, Alexeiev D, Wang K-L, Wong J, Degtyarev K, Kozakov I (2017) No excessive crustal growth in the Central Asian Orogenic Belt: further evidence from field relationships and isotopic data. Gondwana Res 50:135–166

  • Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K, Kozakov I (2017) No excessive crustal growth in the Central Asian Orogenic Belt: further evidence from field relationships and isotopic data. Gondwana Res 8:503–504

    Google Scholar 

  • Kumar S, Rino V (2006) Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoid, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib Mineral Pet 152:591–609

    Article  Google Scholar 

  • Kumar S, Rino V, Pal AB (2004) Field evidence of magma mixing from microgranular enclaves hosted in Palaoproterozoic Malanjkhand granitoid, Central India. Gondwana Res 7:539–548

    Article  Google Scholar 

  • Lee CTA, Bachmann O (2014) How important is the role of crystal fraction in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274

    Article  Google Scholar 

  • Li YJ, Sun LD, Wu HR, Wang GL, Yang CS, Peng GX (2005) Permo-Carboniferous radiolaria from the Wupatarkan Group, west terminal of Chinese South Tianshan. Chinese J Geol 40:220–226 (in Chinese with English abstract)

    Google Scholar 

  • Li PF, Sun M, Rosenbaum G, Cai KD, Yuan C, Jourdan F, Xia XP, Jiang YD, Zhang YY (2020) Tectonic evolution of the Chinese Tianshan Orogen from subduction to arc-continent collision: Insight from polyphase deformation along the Gangou section, Central Asia. Geol Soc Am Bull 132:2529–2552

    Article  Google Scholar 

  • Liu YS, Zong KQ, Kelemen PB, Gao S (2008) Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247:133–153

    Article  Google Scholar 

  • Liu H, Wang B, Shu LS, Jahn BM, Lizuka Y (2014) Detrital zircon ages of Proterozoic meta-sedimentary rocks and Paleozoic sedimentary cover of the northern Yili Block: implications for the tectonics of microcontinents in the Central Asian Orogenic Belt. Precambr Res 252:209–222

    Article  Google Scholar 

  • Lomize MG, Demina L, Zarshchikov AA (1997) The Kyrgyz-Terskei Paleoceanic Basin, Tien Shan. Geotectonics 31:463–482

    Google Scholar 

  • Long LL, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang J, Jiang T (2011) Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos 126:321–340

    Article  Google Scholar 

  • Ludwig KR (2001) Users: manual for Isoplot/Ex Rev. 2.49. Berkeley Geochronology Centre Special Publication, Berkeley, pp 1–56

    Google Scholar 

  • Ma ZP, Xia LQ, Xu XY, Li XM, Xia ZC, Wang LS (2007) Dating for zircons of gabbros from Kulehu ophiolite, southern Tianshan, and its geological implication. J Northwest Univ (nat Sci Ed) 37:107–110 (in Chinese with English abstract)

    Google Scholar 

  • Ma XX, Shu LS, Jahn BM, Zhu WB, Faure M (2012) Precambrian tectonic evolution of Central Tianshan, NW China: Constraints from U–Pb dating and in situ Hf isotopic analysis of detrital zircons. Precambr Res 222–223:450–473

    Article  Google Scholar 

  • Ma XX, Shu LS, Meert JG, Li JY (2014) The Paleozoic evolution of Central Tianshan: geochemical and geochronological evidence. Gondwana Res 25:797–819

    Article  Google Scholar 

  • Mao QG, Ao SJ, Windley BF, Zhang ZY, Song DF, Zhang J, Wan B, Tan W, Han CM, Xiao WJ (2021) Petrogenesis of Late Carboniferous–Early Permian mafic-ultramafic-felsic complexes in the eastern Central Tianshan, NW China: the result of subduction-related transtension? Gondwana Res 95:72–87

    Article  Google Scholar 

  • McLeod CL, Davidson JP, Nowell GM, de Silva SL (2012) Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems. Geology 40:435–438

    Article  Google Scholar 

  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75

    Article  Google Scholar 

  • Patiño Douce AE, McCarthy TC (1997) Melting of crustal rocks during continental collision and subduction. In: Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer, Dordrecht, pp 27–55

    Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambr Res 126:197–218

    Article  Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Qian Q, Xu SL, He GQ, Klemd R, Xiong XM, Long LL, Gao J (2007) Elemental geochemistry and tectonic significance of Cambrian basalts from the northern side of the Nalati Mountain. Acta Petrol Sin 23:1708–1720 (in Chinese with English abstract)

    Google Scholar 

  • Richards JP, López GP, Zhu JJ, Creaser RA, Locock AJ, Mumin AH (2017) Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion–related iron oxide Cu-Au Deposits in Northern Chile. Econ Geol Bull Soc Econ Geol 112:295–318

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The Crust, vol 3. Elsevier Sci., New York, pp 1–64

  • Safonova IY, Sennikov NV, Komiya T (2011) Geochemical diversity in oceanic basalts hosted by the Zasur’ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. J Asian Earth Sci 42:191–207

    Article  Google Scholar 

  • Sengör AMC, Natal’in BA (2004) Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Elsevier, Amsterdam, pp 675–726

    Chapter  Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Sharma M (1997) Siberian traps. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, Washington, pp 273–295

    Google Scholar 

  • Shu LS, Lu HF, Charvet J, Laurent-Charvet S, Yin DH (2000) Paleozoic accretionary terranes in Northern Tianshan, NW China. Chin J Geochem 19:193–202

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Minerol Petrol 148:635–661

    Article  Google Scholar 

  • SöDerlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Staudigel H, Plank T, White B, Schmincke HU, Bebout GE, Scholl SW, Kirby SH, Platt JP (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418, 19–38. American Geophysical Union, Washington

    Google Scholar 

  • Su W, Gao J, Klemd R, Li JL, Zhang X, Li XH, Chen NS, Zhang L (2010) U-Pb zircon geochronology of Tianshan eclogites in NW China: implication for the collision between the Yili and Tarim blocks of the southwestern Altaids. Eur J Mineral 22:473–478

    Article  Google Scholar 

  • Su WB, Cai KD, Sun M, Wan B, Wang XS, Bao ZH, Xiao WJ (2018) Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: in sight from temporal-spatial character, petrogenesis and tectonic significance. Lithos 310–311:241–254

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tan Z, Agard P, Monie P, Gao J, John T, Bayet L, Jiang T, Wang XS, Hong T, Wan B, Caron B (2019) Architecture and P–T-deformation-time evolution of the Chinese SW-Tianshan HP/UHP complex: implications for subduction dynamics. Earth Sci Rev 197:102894

    Article  Google Scholar 

  • Tang GJ, Wang Q, Wyman DA, Li ZX, Xu YG, Zhao ZH (2012) Metasomatized lithosphere–asthenosphere interaction during slab roll-back: evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos 155:67–80

    Article  Google Scholar 

  • Tang GJ, Wang Q, Wyman DA, Dan W (2019) Crustal maturation through chemical weathering and crustal recycling revealed by Hf–O–B isotopes. Earth Planet Sci Lett 524:115709

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Oxford Press, Blackwell, p 312

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439

    Article  Google Scholar 

  • Wan YS, Dong CY, Liu DY, Kröner A, Yang CH, Wang W, Du LL, Xie HQ, Ma MZ (2012) Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review. Precambr Res 222–223:265–289

    Article  Google Scholar 

  • Wang ZX, Wu JY, Lv XC, Zhang JG, Liu CD (1990) Paleozoic tectonic evolution and metallogeny of the Tianshan Mountains. Science Preess, Beijing, pp 1–217 (in Chinese with English abstract)

    Google Scholar 

  • Wang B, Faure M, Cluzel D, Shu LS, Charvet J, Meffre S, Ma Q (2006) Late Paleozoic tectonic evolution of the northern West Chinese Tianshan belt. Geo Acta 19:237–247

    Article  Google Scholar 

  • Wang B, Faure M, Shu LS, Cluzel D, Charvet J, de Jong K, Chen Y (2008) Paleozoic geodynamic evolution of the Yili Block, Western Chinese Tianshan. Bull Soc Geol France 179:483–490

    Article  Google Scholar 

  • Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW, Han BF (2009) Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian orogenic belt. Lithos 110:359–372

    Article  Google Scholar 

  • Wang B, Shu LS, Faure M, Jahn BM, Cluzel D, Charvet J, Chung SL, Meffre S (2011) Paleozoic tectonics of the southern Chinese Tianshan: insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics 497:85–104

    Article  Google Scholar 

  • Wang XS, Gao J, Klemd R, Jiang T, Li JL, Zhang X, Xue SC (2017) The Central Tianshan Block: a microcontinent with a Neoarchean–Paleoproterozoic basement in the southwestern Central Asian Orogenic Belt. Precambr Res 295:130–150

    Article  Google Scholar 

  • Wang XS, Cai KD, Sun M, Zhao GC, Xiao WJ, Xia XP (2020a) Evolution of late Paleozoic magmatic arc in the Yili Block, NW China: implications for oroclinal bending in the western Central Asian Orogenic Belt. Tectonics 39:e2019TC005822

    Article  Google Scholar 

  • Wang XS, Klemd R, Gao J, Jiang T, Zhang X (2020b) Early Devonian tectonic conversion from contraction to extension in the Chinese Western Tianshan: a response to slab rollback. Geol Soc Am. https://doi.org/10.1130/B35760.1

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petr 95:407–419

    Article  Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Springer, Harper Collins Academic, London, p 466

    Book  Google Scholar 

  • Windley BF (1992) Proterozoic collisional and accretionary orogens. In: Condie KC (ed) Proterozoic Crustal Evolution, vol 10. Elsevier, Amsterdam, pp 419–446

  • Windley BF, Alexeiev D, Xiao W, Kroner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic belt. J Geol Soc Lond 164:31–47

    Article  Google Scholar 

  • XBGMR (1993) Regional geology of Xinjiang Uygur autonomous region. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Xia LQ, Li XM (2020) Revisiting the tectonic setting of the Carboniferous volcanic rocks in the Chinese Tianshan and its neighboring areas. Gondwana Res 84:1–19

    Article  Google Scholar 

  • Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of Central Asia. Am J Sci 304:370–395

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Allen MB, Han CM (2013) Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res 23:1316–1341

    Article  Google Scholar 

  • Xing L, Yang WZ, Zang M, Lin ZH, Chen W (2015) Zircon SHRIMP U-Pb dating of the monzonitic granite from Katebasu Au–Cu deposit and its geological implications in Xinjiang. Xinjiang Geol 33:1–6 (in Chinese with English abstract)

    Google Scholar 

  • Xing H, Xue CJ, Chi GX, Zhao XB, Liu C, Man RH, Symons DTA (2021) Petrogenesis of volcanic rocks of the Devonian–Carboniferous Dahalajunshan Formation, Western Tianshan: implications for crustal growth in an accretionary orogen. Lithos 386–387:106003

    Article  Google Scholar 

  • Xu XY, Wang HL, Li P, Chen JL, Ma ZP, Zhu T, Wang N, Dong YP (2013) Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution. J Asian Earth Sci 72:33–62

    Article  Google Scholar 

  • Yang JS, Xu XZ, Li TF, Chen SY, Ren YF, Li JY, Liu Z (2011) U–Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: evidence of early Paleozoic oceanic basin. Acta Petrol Sin 27:77–95 (in Chinese with English abstract)

    Google Scholar 

  • Yuan HL, Gao S, Dai MN, Zong CL, Gunther D, Fontaine GH, Liu XM, Diwu C (2008) Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol 247:100–118

    Article  Google Scholar 

  • Zhang W, Hu ZC (2020) Estimation of isotopic reference values for pure materials and geological reference materials. Atom Spectrosc 41:93–102

    Article  Google Scholar 

  • Zhang DY, Zhang ZC, Encarnacion J, Xue CJ, Duan SG, Zhao ZD, Liu JL (2012) Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: implications for tectonic evolution during Late Paleozoic time. Lithos 146–147:65–79

    Article  Google Scholar 

  • Zhao XB, Xue CJ, Chi GX, Qi TJ, Wang HG (2014) Epithermal Au and polymetallic mineralization in the Tulasu Basin, western Tianshan, NW China: Potential for the discovery of porphyry CuAu deposits. Ore Geol Rev 60:76–96

    Article  Google Scholar 

  • Zhao ZY, Zhang ZC, Santosh M, Huang H, Cheng ZG, Ye JC (2015) Early Paleozoic magmatic record from the northern margin of the Tarim Craton: further insights on the evolution of the Central Asian Orogenic Belt. Gondwana Res 28:328–347

    Article  Google Scholar 

  • Zhao WC, Zhao XB, Xue CJ, Symons DTA, Cui XJ, Xing L (2019) Structural characterization of the Katebasu gold deposit, Xinjiang, China: tectonic correlation with the amalgamation of the western Tianshan. Ore Geol Rev 107:888–902

    Article  Google Scholar 

  • Zhao XB, Xue CJ, Seltmann R, Dolgopolova A, Andersen JC, Zhang GZ (2020) Volcanic–plutonic connection and associated Au–Cu mineralization of the Tulasu ore region, Western Tianshan, NW China: implications for mineralization potential in Paleozoic arc terranes. Geol J 55:2318–2341

    Article  Google Scholar 

  • Zhong LL, Wang B, Shu LS, Liu HS, Mu LX, Ma YZ, Zhai YZ (2015) Structural overprints of early Paleozoic arc-related intrusive rocks in the Chinese Central Tianshan: implications for Paleozoic accretionary tectonics in SW Central Asian Orogenic Belts. J Asian Earth Sci 113:194–217

    Article  Google Scholar 

  • Zhong LL, Wang B, Alexeiev DV, Cao YC, Biske YS, Liu HS, Zhai YZ, Xing LZ (2017) Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: new constraints from plutonic complex in the Nalati Range. Gondwana Res 45:254–274

    Article  Google Scholar 

  • Zhu YF, Zhang LF, Gu LB, Guo X, Zhou JB (2005) The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chin Sci Bull 50:2201–2212

    Article  Google Scholar 

  • Zhu YF, Guo X, Song B, Zhang LF, Gu LB (2009) Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Paleozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. J Geol Soc Lond 166:1085–1099

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments by anonymous reviewers and the editorial handling by the Editor-in-Chief are gratefully acknowledged. We thank Zhang Qi and Zu Bo for their assistance in the field. This study was jointly supported by the National Natural Science Foundation of China (41602076 and 42102061), the National Key Research and Development Program of China (2017YFC0601202) and the Fundamental Research Funds for the Central Universities (2652019044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhao.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Zhao, X., Xue, C. et al. Continental growth during Devono-Carboniferous switching accretionary tectonics: the Katebasu granitoid stock, Central Tianshan, NW China. Int J Earth Sci (Geol Rundsch) 111, 2715–2739 (2022). https://doi.org/10.1007/s00531-021-02139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02139-0

Keywords

Navigation