Skip to main content
Log in

Shear-assisted water-fluxed melting and AFC processes in the foreland of the Early Paleozoic Famatinian orogen: petrogenesis of leucogranites and pegmatites from the Sierras de Córdoba, Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Comechingones pegmatitic field, central Argentina, leucogranite and pegmatite bodies crop out in a relatively narrow (25 × 10 km) belt, and were emplaced synkinematically with the main deformational event of the crustal-scale Guacha Corral shear zone during the Early Ordovician (~ 475 Ma). These leucogranites and pegmatites are geochemically evolved rocks with high silica and alkalis, low Fe2O3, MgO, TiO2 and CaO, and high ASI values. The leucogranites display quite variable Sr and Nd isotope compositions (initial 87Sr/86Sr ratios from 0.7048 to 0.7170, and εNd values from + 2.0 to − 3.1), some of which do not overlap with almost any other pre-Famatinian rock from the Sierras de Córdoba. The major and trace element geochemistry and the particular Sr and Nd isotope compositions of the leucogranites are here explained by the following processes: (1) water-fluxed partial melting of amphibolites at relatively low P–T conditions generating currently unexposed granodioritic melts with unradiogenic 87Sr/86Sr ratios and radiogenic εNd values; (2) fractionation of mostly plagioclase and monazite leading to compositions close to the leucogranite melts; and (3) assimilation of metasedimentary rocks with crustal isotopic signatures, modelled by assimilation and fractional crystallization processes. The major, trace and isotope compositions of the pegmatites suggest a derivation from partial melting of the same metasedimentary protoliths of the Sierras de Córdoba that were assimilated by leucogranite melts. We propose a feedback relationship among deformation, anatexis, magma evolution and mass transfer in the context of such a crustal-scale shear zone in the foreland of the Famatinian orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from Rapela et al. 2018)

Fig. 6
Fig. 7

taken from: Rapela et al. (1998a) and Steenken et al. (2011) for amphibolites; and Rapela et al. (1998a), Escayola et al. (2007), Drobe et al. (2011), Steenken et al. (2011) and Iannizzotto et al. (2013) for metasedimentary rocks (data summarized in Table 3)

Similar content being viewed by others

References

  • Alasino PH, Casquet C, Larrovere MA, Pankhurst RJ, Galindo C, Dahlquist JA, Baldo EG, Rapela CW (2014) The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos 190–191:154–172. https://doi.org/10.1016/j.lithos.2013.12.006

    Article  Google Scholar 

  • Alasino PH, Casquet C, Pankhurst RJ, Rapela CW, Dahlquist JA, Galindo C, Larrovere MA, Recio C, Paterson SR, Colombo F, Baldo EG (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): new insights into the mantle contribution. Geol Soc Am Bull 128:1105–1120. https://doi.org/10.1130/B31417.1

    Article  Google Scholar 

  • Andrade FRD, Möller P, Höhndorf A (1999) The Effect of Hydrothermal Alteration on the Sr and Nd Isotopic Signatures of the Barra do Itapirapuã Carbonatite, Southern Brazil. J Geol 107(2):177–191. https://doi.org/10.1086/314339

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount-Mazama, Crater Lake, Oregon. Contrib Miner Petrol 98:224–256. https://doi.org/10.1007/bf00402114

    Article  Google Scholar 

  • Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24(4):295–298. https://doi.org/10.1130/0091-7613(1996)024%3c0295:gottmt%3e2.3.co;2

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32(2):365–401. https://doi.org/10.1093/petrology/32.2.365

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: Meteorite Studies. In: Henderson P (ed) Rare earth element geochemistry. Developments in Geochemistry. Elsevier, Amsterdam, pp 63–114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3

  • Butler RWH, Harris NBW, Whittington AG (1997) Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas. Mineral Mag 61(404):37–52. https://doi.org/10.1180/minmag.1997.061.404.05

  • Camilletti G, Otamendi JE, Tibaldi A, Cristofolini E, Leisen M, Romero R, Barzola M (2020) Geology, petrology and geochronology of sierra Valle Fértil—La Huerta batholith: Implications for the construction of a middle-crust magmatic-arc section. J South Am Earth Sci 97:102423. https://doi.org/10.1016/j.jsames.2019.102423

  • Carter SR, Evensen NM, Hamilton PJ, O’Nions RK (1978) Neodymium and strontium isotope evidence for crustal contamination of continental Volcanics. Science 202(4369):743–747. https://doi.org/10.1126/science.202.4369.743

    Article  Google Scholar 

  • Casquet C, Rapela CW, Pankhurst RJ, Baldo EG, Galindo C, Fanning CM, Dahlquist JA (2012) Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Res 22:664–673. https://doi.org/10.1016/j.gr.2012.05.001

    Article  Google Scholar 

  • Casquet C, Dahlquist JA, Verdecchia SO, Baldo EG, Galindo C, Rapela CW, Pankhurst RJ, Morales MM, Murra JA, Fanning CM (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogeny formerly attached to the Saldania Belt of South Africa? Earth Sci Rev 177:209–225. https://doi.org/10.1016/j.earscirev.2017.11.013

    Article  Google Scholar 

  • Castro A (2014) The off-crust origin of granite batholiths. Geosci Front 5(1):63–75. https://doi.org/10.1016/j.gsf.2013.06.006

    Article  Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43(6):2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005

    Article  Google Scholar 

  • Cesbron FP (1989) Mineralogy of the Rare-Earth Elements. In: Möller P, Černý P, Saupé F (eds) Lanthanides, Tantalum and Niobium. Society for geology applied to mineral deposits, Special Publication No. 7. Springer, Berlin, Heidelberg, pp 3–26. https://doi.org/10.1007/978-3-642-87262-4_1

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26. https://doi.org/10.1017/S0263593300007720

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48(4):489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. https://doi.org/10.1016/j.lithos.2012.01.001

    Article  Google Scholar 

  • Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126(3–4):174–181. https://doi.org/10.1016/j.lithos.2011.07.004

    Article  Google Scholar 

  • Collins WJ (1996) Lachlan fold belt granitoids: products of three-component mixing. Trans R Soc Edinb Earth Sci 87:171–181. https://doi.org/10.1130/0-8137-2315-9.171

    Article  Google Scholar 

  • Cristofolini EA, Fagiano M, Pinotti LP (2008) Fábricas migmáticas y miloníticas: un análisis comparativo, norte de Sierra de Comechingones, Córdoba. XVII Congreso Geológico Argentino, 1334. San Salvador de Jujuy, Argentina

  • Cristofolini EA, Otamendi JE, Ducea MN, Pearson DM, Tibaldi AM, Baliani I (2012) Detrital zircon U-Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. J South Am Earth Sci 37:77–94. https://doi.org/10.1016/j.jsames.2012.02.001

    Article  Google Scholar 

  • Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH, Saavedra J, Fanning CM (2007) Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95(3–4):177–207. https://doi.org/10.1016/j.lithos.2006.07.010

    Article  Google Scholar 

  • Dahlquist JA, Pankhurst RJ, Rapela CW, Galindo C, Alasino P, Fanning CM, Saavedra J, Baldo E (2008) New SHRIMP U-Pb data from the Famatina complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geol Acta 6:319–333. https://doi.org/10.1344/105.000000260

    Article  Google Scholar 

  • Dahlquist JA, Rapela CW, Pankhurst RJ, Fanning CM, Vervoort JD, Garret H, Baldo EG, Murra JA, Alasino P, Colombo F (2012) Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, Argentina. J S Am Earth Sci 34:10–25. https://doi.org/10.1016/j.jsames.2011.07.006

    Article  Google Scholar 

  • Dahlquist JA, Pankhurst RJ, Gaschnig RM, Rapela CW, Casquet C, Alasino PH, Galindo C, Baldo E (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Res 23:1617–1630. https://doi.org/10.1016/j.gr.2012.08.013

    Article  Google Scholar 

  • Davidson JP, de Silva SL (1992) Volcanic rocks from the Bolivian Altiplano: insights into crustal structure, contamination, and magma genesis in the central Andes. Geology 20(12):1127–1130. https://doi.org/10.1130/0091-7613(1992)020%3c1127:vrftba%3e2.3.co;2

    Article  Google Scholar 

  • Demartis M, Coniglio JE, Pinotti LP, D`Eramo FJ, Agulleiro Insúa LA, Muñoz AA, Petrelli HA (2010) Fluid modelling of the pegmatites from the southern portion of the Comechingones field, Córdoba: new stable isotope data. 10º Congreso de Mineralogía y Metalogenia, Río Cuarto. Actas: 171–178. ISBN: 978-987-1003-64-8

  • Demartis M, Pinotti LP, Coniglio JE, D’Eramo FJ, Tubía JM, Aragón E, Agulleiro Insúa LA (2011) Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina). J Struct Geol 33(9):1334–1346. https://doi.org/10.1016/j.jsg.2011.06.008

    Article  Google Scholar 

  • Demartis M, Melgarejo JC, Colombo F, Alfonso P, Coniglio JE, Pinotti LP, D’Eramo FJ (2014) Extreme F activities in late pegmatitic events as a key factor for LILE and HFSE enrichment: the Ángel pegmatite, Central Argentina. Can Mineral 52(2):247–269. https://doi.org/10.3749/canmin.52.2.247

    Article  Google Scholar 

  • Demartis M, Jung S, Berndt J, Aragón E, Sato AM, Radice S, Maffini MN, Coniglio JE, Pinotti LP, D’Eramo FJ, Agulleiro Insúa LA (2017) Famatinian inner arc: Petrographical observations and geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina). J S Am Earth Sci 79:239–253. https://doi.org/10.1016/j.jsames.2017.08.010

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. https://doi.org/10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • D’Eramo FJ, Pinotti LP, Tubía JM, Vegas N, Coniglio JE, Aranguren A, Tejero R, Gómez D (2006) Coalescence of lateral spreading magma ascending through dykes: a mechanism to form a granite canopy (El Hongo pluton, Sierras Pampeanas, Argentina). J Geol Soc Lond 163(5):881–892. https://doi.org/10.1144/0016-764905-060

    Article  Google Scholar 

  • D’Eramo FJ, Tubía JM, Pinotti LP, Vegas N, Coniglio JE, Demartis M, Aranguren A, Basei M (2013) Granite emplacement by crustal boudinage: example of the Calmayo and El Hongo plutons (Córdoba, Argentina). Terra Nova 25(5):423–430. https://doi.org/10.1111/ter.12053

    Article  Google Scholar 

  • D’Eramo FJ, Pinotti LP, Bonalumi A, Sfragulla J, Demartis M, Coniglio JE, Baldo EG (2014) El magmatismo Ordovícico en las Sierras Pampeanas de Córdoba. Martino RD, Guereschi AB (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia de Córdoba. Asociación Geológica Argentina, Part I, pp 233e254

  • Drobe M, López de Luchi M, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. Int J Earth Sci 100(2–3):631–657. https://doi.org/10.1007/s00531-010-0593-3

    Article  Google Scholar 

  • Ducea MN, Bergantz GW, Crowley JL, Otamendi JE (2017) Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology. https://doi.org/10.1130/G38726.1

    Article  Google Scholar 

  • Escayola MP, Pimentel MM, Armstrong R (2007) Neoproterozoic back arc basin: Sensitive high-resolution ion microprobe U–Pb and Sm–Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology 35(6):495. https://doi.org/10.1130/g23549a.1

    Article  Google Scholar 

  • Fagiano M (2007) Geología y Petrología del basamento cristalino de las Albahacas, sur de la Sierra de Comechingones, Córdoba. Dissertation, National University of Río Cuarto, Argentina

  • Fagiano M, Martino R (2004) Cinemática y petrología de la faja de cizalla Guacha Corral en el extremo austral de la sierra de Comechingones, Provincia de Córdoba. Rev de la Asociación Geol Argent Ser D 7:45–50

    Google Scholar 

  • Fagiano M, Pinotti LP, Esparza AM (2004) Metamorfismo, deformación y magmatismo asociados en el tramo medio de la Sierra de Comechingones, provincia de Córdoba. VII Congreso de Mineralogía y Metalogenia, 315-320. Río Cuarto, Argentina

  • Fanning CM, Pankhurst RJ, Rapela CW, Baldo EG, Casquet C, Galindo C (2004) K-bentonites in the Argentine Precordillera contemporaneous with volcanism in the Famatinian arc. J Geol Soc Lond 161:747–756. https://doi.org/10.1144/0016-764903-130

    Article  Google Scholar 

  • Galliski M (1994) La Provincia Pegmatítica Pampeana. I: Tipología y distribución de sus distritos económicos. Rev de la Asociación Geol Argent 49:99–112

    Google Scholar 

  • Grosse P, Bellos LI, de los Hoyos CR, Larrovere MA, Rossi JN, Toselli AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. J South Am Earth Sci 32:110–126. https://doi.org/10.1016/j.jsames.2011.03.014

  • Healy B, Collins WJ, Richards SW (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos 78(1–2):197–216. https://doi.org/10.1016/j.lithos.2004.04.047

    Article  Google Scholar 

  • Hildreth W, Halliday AN, Christiansen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field. J Petrol 32(1):63–138. https://doi.org/10.1093/petrology/32.1.63

    Article  Google Scholar 

  • Hoernle K, Hauff F, Kokfelt TF, Haase K, Garbe-Schönberg D, Werner R (2011) On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean Ridge (5–11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? Earth Planet Sci Lett 306(1–2):86–97. https://doi.org/10.1016/j.epsl.2011.03.032

    Article  Google Scholar 

  • Iannizzotto NF, Rapela CW, Baldo EGA, Galindo C, Fanning CM, Pankhurst RJ (2013) The Sierra Norte-Ambargasta batholith: Late Ediacaran-Early Cambrian magmatism associated with Pampean transpressional tectonics. J South Am Earth Sci 42:127–143. https://doi.org/10.1016/j.jsames.2012.07.009

    Article  Google Scholar 

  • Jordan TE, Allmendiger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764. https://doi.org/10.2475/ajs.286.10.737

    Article  Google Scholar 

  • Kalsbeek F, Frei R (2006) The Mesoproterozoic Midsommersø dolerites and associated high-silica intrusions, North Greenland: crustal melting, contamination and hydrothermal alteration. Contrib Miner Petrol 152(1):89–110. https://doi.org/10.1007/s00410-006-0096-1

    Article  Google Scholar 

  • Larsen RB (2002) The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. Can Mineral 40(1):137–152. https://doi.org/10.2113/gscanmin.40.1.137

    Article  Google Scholar 

  • Lee Y, Cho M (2013) Fluid-present disequilibrium melting in Neoarchean arc related migmatites of Daeijak Island, western Gyeonggi Massif, Korea. Lithos 179:249–262. https://doi.org/10.1016/j.lithos.2013.08.011

    Article  Google Scholar 

  • Lira R, Sfragulla J (2014) El magmatismo Devónico-Carbonífero: el batolito de Achala y plutones menores al norte del cerro Champaquí. In: Martino RD, Guereschi AB (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia de Córdoba. Asociación Geológica Argentina, part I, pp 293–347

  • Llambías EJ, Sato AM, Ortiz Suárez A, Prozzi C (1998) The granitoids of the Sierra de San Luis. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society (London), vol 142, pp 325–341. https://doi.org/10.1144/gsl.sp.1998.142.01.16

  • López S, Castro A (2001) Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am Miner 86:1396–1403. https://doi.org/10.2138/am-2001-11-1208

    Article  Google Scholar 

  • Luais B, Duchêne S, de Sigoyer J (2001) Sm–Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks. Tectonophysics 342(1–2):1–22. https://doi.org/10.1016/s0040-1951(01)00154-8

    Article  Google Scholar 

  • Martino R (2003) Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general. Rev de la Asociación Geol Argent 58(4):549–571

    Google Scholar 

  • Martino R, Kraemer D, Escayola P, Giambastiani M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32°00’ LS. Rev de la Asociación Geol Argent 50:60–77

    Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet Sci Lett 58(1):51–64. https://doi.org/10.1016/0012-821x(82)90102-9

    Article  Google Scholar 

  • Morosini A, Enriquez E, Pagano D, Orozco B, Ulacco J, Tibaldi A, Cristofolini E, Muñoz B, Ortiz Suárez A, Montenegro V, Sánchez E, Icazatti F, Gil R, Crespo E, Ramos G (2019) Las Cañas plutonic complex: geodynamic implications during the Famatinian magmatism in northeast of Sierra de San Luis, Argentina. J South Am Earth Sci 93:313–347. https://doi.org/10.1016/j.jsames.2019.04.028

    Article  Google Scholar 

  • Morteani G, Eichinger F, Tarantola A, Müller A, Götze J, Sfragulla JA (2016) The synorogenic pegmatitic quartz veins of the Guacha Corral Shear zone (Sierra de Comechingones, Argentina): a textural, chemical, isotopic, cathodoluminescence and fluid inclusion study. Geochemistry 76(3):391–404. https://doi.org/10.1016/j.chemer.2015.09.001

    Article  Google Scholar 

  • Murra JA, Casquet C, Locati F, Galindo C, Baldo EG, Pankhurst RJ, Rapela CW (2016) Isotope (Sr, C) and U–Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambr Res 281:602–617. https://doi.org/10.1016/j.precamres.2016.06.012

    Article  Google Scholar 

  • Ort MH, Coira BL, Mazzoni MM (1996) Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes. Contrib Miner Petrol 123(3):308–322. https://doi.org/10.1007/s004100050158

    Article  Google Scholar 

  • Otamendi JE, Patiño Douce A, Demichelis A (1999) Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Argentina. J Metamorph Geol 17:415–434. https://doi.org/10.1046/j.1525-1314.1999.00208.x

    Article  Google Scholar 

  • Otamendi JE, Castelarini PA, Fagiano M, Demichelis A, Tibaldi AM (2004) Cambrian to Devonian geologic evolution of the Sierra de Comechingones, eastern Sierras Pampeanas: evidence for the development and exhumation of continental crust on the proto-pacific margin of Gondwana. Gondwana Res 7(4):1143–1155. https://doi.org/10.1016/S1342-937X(05)71090-X

    Article  Google Scholar 

  • Otamendi JE, Ducea MN, Bergantz GW (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. J Petrol 53(4):761–800. https://doi.org/10.1093/petrology/egr079

    Article  Google Scholar 

  • Otamendi JE, Ducea MN, Cristofolini EA, Tibaldi AM, Camilletti GC, Bergantz GW (2017) U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina. J South Am Earth Sci 76:412–426. https://doi.org/10.1016/j.jsames.2017.04.005

    Article  Google Scholar 

  • Palin RM, White RW, Green ECR, Diener JFA, Powell R, Holland TJB (2016) High grade metamorphism and partial melting of basic and intermediate rocks. J Metamorph Geol 34:871–892. https://doi.org/10.1111/jmg.12212

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW (1998) The proto-Andean margin of Gondwana: an introduction. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society (London), vol 142, pp 1–9. https://doi.org/10.1144/gsl.sp.1998.142.01.01

  • Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I-S-type granites in the Famatinian belt of NW Argentina. Trans R Soc Edinb Earth Sci 91:151–168. https://doi.org/10.1017/s0263593300007343

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society (London), vol 142, pp 343–367. https://doi.org/10.1144/gsl.sp.1998.142.01.17

  • Pascua I (1998) Las rocas ígneas y metamórficas de la Sierra de los Llanos, La Rioja, Argentina: evolución famatiniana de un sector del basamento pre-mesozoico Andino. Dissertation, University of Salamanca, Spain

  • Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34(3):307–322. https://doi.org/10.1016/0016-7037(70)90108-0

    Article  Google Scholar 

  • Pinotti LP, Coniglio JE, Esparza AM, D’Eramo FJ, Llambías EJ (2002) Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Áspero batholith, Sierras Pampeanas de Córdoba, Argentina. J South Am Earth Sci 15:251–265. https://doi.org/10.1016/S0895-9811(02)00033-0

    Article  Google Scholar 

  • Pinotti LP, Tubía JM, D’Eramo FJ, Vegas N, Sato AM, Coniglio JE, Aranguren A (2006) Structural interplay between plutons during the construction of a batholith (Cerro Áspero batholith, Sierras de Córdoba, Argentina). J Struct Geol 28(5):834–849. https://doi.org/10.1016/j.jsg.2006.02.004

    Article  Google Scholar 

  • Pinotti LP, Coniglio JE, D'Eramo FJ, Demartis M, Otamendi JE, Fagiano MR, Zambroni NE (2014) El magmatismo devónico: geología del batolito de Cerro Áspero. In: Martino RD, Guereschi AB (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia de Córdoba. Asociación Geológica Argentina, Part I, pp 255–276

  • Pinotti LP, D’Eramo FJ, Weinberg RF, Demartis M, Tubía Martínez JM, Coniglio JE, Radice S, Maffini MN, Aragón E (2016) Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina). J Struct Geol 92:46–58. https://doi.org/10.1016/j.jsg.2016.09.009

  • Radice S, Arangue J, Fagiano M, Pinotti LP, Cristofolini E (2015) Microfábricas de deformación del basamento metamórfico, sector centro-oriental de la Sierra de Comechingones, Córdoba. Rev de la Asociación Geol Argent 72(2):157–166

    Google Scholar 

  • Radice S, Sola AM, Maffini MN, D’Eramo FJ, Weinberg RF, Pinotti LP, Demartis M, Coniglio JE, Boffadossi MA, Muratori ME (2020) Constraining the timing and evolution of a long-lived tectonic boundary: an example from the Early Paleozoic Argentina. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2020.102892

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998a) The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society (London), Special Publication, vol 142, pp 181–217

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C (1998b) Early evolution of the proto-Andean margin of South America. Geology 26(8):707–710. https://doi.org/10.1130/0091-7613(1998)026%3c0707:EEOTPA%3e2.3.CO;2

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Dahlquist JA, Fanning CM, Baldo EG, Galindo C, Alasino PH, Ramacciotti CO, Verdecchia SO, Murra JA, Basei MAS (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Sci Rev 187:259–285. https://doi.org/10.1016/j.earscirev.2018.10.006

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites. In: Haapala I, Condie KC (eds) Precambrian Granitoids—petrogenesis, geochemistry and metallogeny. Precambrian Research, vol 51, pp 1–25. https://doi.org/10.1016/0301-9268(91)90092-o

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931. https://doi.org/10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Reichardt H, Weinberg RF (2012) The dike swarm of the Karakoram shear zone, Ladakh, NW India: Linking granite source to batholith. Geol Soc Am Bull 124(1–2):89–103. https://doi.org/10.1130/b30394.1

    Article  Google Scholar 

  • Reichardt H, Weinberg RF, Andersson UB, Fanning CM (2010) Hybridization of granitic magmas in the source: the origin of the Karakoram Batholith, Ladakh, NW India. Lithos 116:249–272. https://doi.org/10.1016/j.lithos.2009.11.013

    Article  Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Miner Petrol 107(1):41–59. https://doi.org/10.1007/bf00311184

    Article  Google Scholar 

  • Schnetzler C, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochim Cosmochim Acta 34(3):331–340. https://doi.org/10.1016/0016-7037(70)90110-9

    Article  Google Scholar 

  • Schwartz JJ, Gromet LP (2004) Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina. Precambrian Res 129(1–2):1–21. https://doi.org/10.1016/j.precamres.2003.08.011

    Article  Google Scholar 

  • Semenov I, Weinberg RF (2017) A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: the Guacha Corral shear zone, Argentina. J Struct Geol 103:75–99. https://doi.org/10.1016/j.jsg.2017.08.009

    Article  Google Scholar 

  • Semenov I, Weinberg RF, Taylor RJM, Jourdan F (2019) Prolonged Movement on a > 10-km-Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina. Tectonics 38(8):3210–3236. https://doi.org/10.1029/2018tc005417

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Miner Petrol 117(4):394–409. https://doi.org/10.1007/bf00307273

  • Sims J, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow R, Stuart-Smith PG, Miró R (1998) U–Pb, Th–Pb, and Ar–Ar geochronology from the Southern Sierras Pampeanas, Argentina: implications for the Paleozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, vol 142. Geological Society (London), pp 259–281. https://doi.org/10.1144/GSL.SP.1998.142.01.13

  • Steenken A, Wemmer K, Martino RD, López de Luchi MG, Guereschi A, Siegesmund S (2010) Post-Pampean cooling and the uplift of the Sierras Pampeanas in the west of Córdoba (Central Argentina). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 256(2):235–255. https://doi.org/10.1127/0077-7749/2010/0094

  • Steenken A, López de Luchi MG, Martínez Dopico C, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int J Earth Sci 100(2–3):465–488. https://doi.org/10.1007/s00531-010-0624-0

    Article  Google Scholar 

  • Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220. https://doi.org/10.1016/j.chemgeo.2012.01.007

    Article  Google Scholar 

  • Stuart-Smith PG, Camacho A, Sims JP, Skirrow RG, Lyons P, Pieters PE, Black L, Miró R (1999) Uranium-lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: Implications for the tectonic development of the proto-Andean Gondwana margin. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana before Pangea. Geological Society of America Special Paper, vol 336, pp 87–114. https://doi.org/10.1130/0-8137-2336-1.87

  • Suzaño N, Becchio R, Sola A, Ortiz A, Nieves A, Quiroga M, Fuentes G (2017) The role of magma mixing in the evolution of the Early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina. J S Am Earth Sci 76:25–46. https://doi.org/10.1016/j.jsames.2017.02.008

    Article  Google Scholar 

  • Tepper JH, Nelson BK, Bergantz GW, Irving AJ (1993) Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contrib Miner Petrol 113(3):333–351. https://doi.org/10.1007/bf00286926

    Article  Google Scholar 

  • Troll VR, Chadwick JP, Ellam RM, Mc Donnell S, Emeleus CH, Meighan IG (2005) Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh Ireland. Geol Mag 142(6):659–668. https://doi.org/10.1017/s0016756805001068

    Article  Google Scholar 

  • Walker BA, Bergantz GW, Otamendi JE, Ducea MN, Cristofolini EA (2015) A MASH Zone Revealed: the Mafic Complex of the Sierra Valle Fértil. J Petrol 56(9):1863–1896. https://doi.org/10.1093/petrology/egv057

    Article  Google Scholar 

  • Wang Y, He H, Cawood PA, Srithai B, Feng Q, Fan W, Zhang Y, Qian X (2016) Geochronological, elemental and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic post-collisional granitic rocks in NW Thailand and its Paleotethyan implications. Lithos 266–267:264–286. https://doi.org/10.1016/j.lithos.2016.09.012

    Article  Google Scholar 

  • Weinberg RF, Becchio R, Farias P, Suzaño N, Sola A (2018) Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana. Earth Sci Rev 187:219–247. https://doi.org/10.1016/j.earscirev.2018.10.001

    Article  Google Scholar 

  • Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–188. https://doi.org/10.1016/j.lithos.2014.08.021

    Article  Google Scholar 

  • Weinberg RF, Mark G (2008) Magma migration, folding, and disaggregation of migmatites in the Karakoram shear zone, Ladakh, NW India. Geol Soc Am Bull 120:994–1009. https://doi.org/10.1130/B26227.1

    Article  Google Scholar 

  • Whitmeyer SJ, Simpson C (2003) High strain-rate deformation fabrics characterize a kilometers-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina. J Struct Geol 25:909–922. https://doi.org/10.1016/S0191-8141(02)00118-9

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127(1–3):43–59. https://doi.org/10.1016/0009-2541(95)00087-9

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1991) Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. Mineral Petrol 44:151–179. https://doi.org/10.1007/bf01166961

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Miner Petrol 115:369–383. https://doi.org/10.1007/bf00320972

    Article  Google Scholar 

  • Yakymchuk C, Zhao W, Wan Y, Lin S, Longstaffe FJ (2019) Fluid-present anatexis of Neoarchean tonalite and amphibolite in the Western Shandong Province. Lithos 326–327:110–124. https://doi.org/10.1016/j.lithos.2018.12.014

    Article  Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics—the model. Tectonophysics 75:135–162. https://doi.org/10.1016/0040-1951(81)90213-4

    Article  Google Scholar 

  • Zeng L, Asimow PD, Saleeby JB (2005a) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta 69(14):3671–3682. https://doi.org/10.1016/j.gca.2005.02.035

    Article  Google Scholar 

  • Zeng L, Saleeby JB, Asimow P (2005b) Nd isotope disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith. Calif Geol 33(1):53. https://doi.org/10.1130/g20831.1

    Article  Google Scholar 

  • Zhang C, Holtz F, Koepke J, Wolff PE, Ma C, Bédard JH (2013) Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambr Res 231:206–217. https://doi.org/10.1016/j.precamres.2013.03.004

    Article  Google Scholar 

  • Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Mineral Petrol 137(4):351–363. https://doi.org/10.1007/s004100050555

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by grants PICT1754/16 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina), PIP688 (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) and PPI 18/C456 (Universidad Nacional de Río Cuarto). The authors want to thank the comprehensive and fruitful reviews of Roberto Weinberg, Sebastián Oriolo and Ulrich Riller that strongly contributed to improve the manuscript. M. Demartis wants to thank Mr. Peter Stutz (Universität Hamburg) for laboratory assistance during a research stay.

Funding

This work has been financially supported by the National Agency for Scientific and Technological Promotion (Agencia Nacional de Promoción Científica y Tecnológica, Argentina), the National Scientific and Technical Research Council (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) and the National University of Río Cuarto (Universidad Nacional de Río Cuarto, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Demartis.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demartis, M., Jung, S., Hauff, F. et al. Shear-assisted water-fluxed melting and AFC processes in the foreland of the Early Paleozoic Famatinian orogen: petrogenesis of leucogranites and pegmatites from the Sierras de Córdoba, Argentina. Int J Earth Sci (Geol Rundsch) 110, 2495–2517 (2021). https://doi.org/10.1007/s00531-020-01961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01961-2

Keywords

Navigation