Skip to main content

Advertisement

Log in

Precursor extension to final Neo-Tethys break-up: flooding events and their significance for the correlation of shallow-water and deep-marine organisms (Anisian, Eastern Alps, Austria)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Anisian depositional history in the Western Tethys realm provides the possibility to study the stepwise opening of the Neo-Tethys, and is well preserved in the sedimentary record of the Northern Calcareous Alps. Whereas the depositional characteristic in the Early (to early Middle) Anisian is characterized by shallow-water carbonates, formed in a semi-restricted environment, the situation changed in the Middle Anisian. A rapid increase of subsidence resulted in an abrupt deepening event with deposition of deeper-water limestones, in some cases even with chert nodules, sometimes with resedimented shallow-water debris intercalated in radiolaria-filament wackestones, or with clayey or marly intercalations. This abrupt deepening, termed the Annaberg Event, is followed by a shallow-water carbonate evolution. The deeper-water limestones can be dated by conodonts and shallow-water organisms like calcareous algae or foraminifera from the resedimented intercalations as Late Bithynian to Early Pelsonian. In contrast to the Early Anisian microbial carbonates, formed under semi-restricted conditions, the Middle Anisian (Pelsonian) shallow-water carbonates were formed under fully marine influence and a diverse fauna and flora was, therefore, able to counterbalance the rapid subsidence by increasing carbonate production. During Middle Anisian times, the newly tectonically created accommodation space became rapidly filled by shallow-water carbonates. At the end of the Middle Anisian (Late Pelsonian), the final break-up of the Neo-Tethys led to a rapid decrease of carbonate production and widespread deposition of deep-marine and condensed limestones. This drowning event (Reifling Event) was accompanied by the formation of a horst-and-graben morphology, dated by conodonts and ammonoids as late Middle Anisian from overlying condensed limestones. In contrast to the well-known drowning event in the late Middle Anisian, precursor events to the final oceanic break-up of the Neo-Tethys have not yet been described, but play an important role in the reconstruction of the opening history of the Neo-Tethys. This knowledge gap is filled by the analysis of exactly datable sedimentary successions in the central Northern Calcareous Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Arthaber GV (1896) Die Cephalopodenfauna der Reiflinger Kalke. Beitr Paläont Geol Österr Ungarn Orient I Abt. 10:1–112

    Google Scholar 

  • Assereto R (1971) Die Binodosus-Zone. Ein Jahrhundert wissenschaftlicher Gegensätze. Sitzber Österr Akad Wiss Wien math-naturwiss Kl Abt I 179:25–53

    Google Scholar 

  • Balini M, Lucas SG, Jenks JF, Spielmann JA (2010) Triassic ammonoid biostratigraphy: an overview. In: Lucas SG (ed) The triassic timescale, vol 334. Geological Society, London, pp 221–262

    Google Scholar 

  • Bechstädt T, Brandner R, Mostler H, Schmidt K (1978) Aborted rifting in the Triassic of the Eastern and Southern Alps. N Jb Geol Paläont Abh 156:157–178

    Google Scholar 

  • Bechtel A, Rünstler H, Gawlick HJ, Gratzer R (2005) Depositional environment of the latest Gutenstein Formation (late Lower Anisian) from the Rabenkogel (Salzkammergut area, Austria), as deduced from hydrocarbon biomarker composition. J Alp Geol/Mitt Ges Geol Bergbaustud 47:159–167

    Google Scholar 

  • Berra F, Carminati E (2010) Subsidence history from a backstripping analysis of the Permo-Mesozoic succession of the Central Southern Alps (northern Italy). Basin Res 22:952–975

    Google Scholar 

  • Brandner R (1984) Meeresspiegelschwankungen und Tektonik in der Trias der NW-Tethys. Jb Geol BA 126:435–475

    Google Scholar 

  • Brandner R, Resch W (1981) Reef development in the Middle Triassic (Ladinian and Cordevolian) of the Northern Limestone Alps near Innsbruck, Austria. SEPM Spec Publ 30:203–231

    Google Scholar 

  • Broili F (1927) Eine Muschelkalkfauna aus der Nähe von Saalfelden. Sitzber Bayer Akad Wiss math-natw Kl 1927:229–242

    Google Scholar 

  • Bucur II (1999) Stratigraphic significance of some skeletal algae (Dasycladales, Caulerpales) of the Phanerozoic. In: Farinacci A, Lord AR (eds) Depositional Episods and Bioevents, vol 2. Palaeopelagos Spec Publ pp 53–104

  • Bucur II, Strutinski C, Pop-Strătilă D (1994) Middle Triassic carbonate deposits and calcareous algae from the Sasca zone (Southern Carpathians, Romania). Facies 30:85–100

    Google Scholar 

  • Bystricky J (1964) Slovensky Kras. Stratigrafia a Dasycladaceae mezozoika Slovenskeho krasu, Ustredny ustav geologicky, Bratislava, p 204

    Google Scholar 

  • Bystricky J (1986) Stratigraphic ranging and zonation of Dasycladal Algae in the West Carpathians Mts., Triassic. Mineralia Slovaca 18:289–321

    Google Scholar 

  • Celarc B, Gorican S, Kolar-Jurkovsek T (2013) Middle Triassic carbonate-platform break-up and formation of small-scale half-grabens (Julian and Kamnik-Savinja Alps, Slovenia). Facies 59:583–610

    Google Scholar 

  • Chen Y, Krystyn L, Orchard MJ, Lai XL, Richoz S (2015) A review of the evolution, biostratigraphy, provincialism and diversity of Middle and Late Triassic condonts. Papers Palaeontol 2015:1–29

    Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Google Scholar 

  • Diener C (1901) Die Cephalopodenfauna der Schiechlinghöhe bei Hallstatt. Beitr Paläont Österr-Ungarn 13:3–42

    Google Scholar 

  • Feist-Burkhardt S, Götz A, Szulc J, Borkhataria R, Geluk M, Haas J., Hornung J, Jordan P, Kempf O, Michalik J, Nawrocki J, Reinhardt L, Ricken W, Röhling HG., Rüffer T, Török A, Zühlke R (2008) Triassic. In: McCann T (ed) The Geology of Central Europe, vol 2. Mesozoic and Cenozoic, The Geological Society London, pp 749–822

  • Fernández O, Habermüller M, Grasemann B (2020) Hooked on salt: Rethinking Alpine tectonics in Hallstatt (Eastern Alps, Austria). Geology. https://doi.org/10.1130/G47981.1

  • Flügel E (1964) Ein neues Vorkommen von Plassenkalk (Ober-Jura) im Steirischen Salzkammergut, Österreich. N Jb Geol Pal Abh 120:213–232

    Google Scholar 

  • Frisch W, Gawlick HJ (2003) The nappe structure of the central Northern Calcareous Alps and its disintegration during Miocene tectonic extrusion—a contribution to understanding the orogenic evolution of the Eastern Alps. Int J Earth Sci 92:712–727

    Google Scholar 

  • Gaetani M, Fois E, Jadoul F, Nicora A (1981) Nature and evolution of Middle Triassic carbonate buildups in the Dolomites (Italy). Mar Geol 44:25–57

    Google Scholar 

  • Gallet Y, Krystyn L, Besse J (1998) Upper Anisian to Lower Carnian magnetostratigraphy from the Northern Calcareous Alps (Austria). J Geophys Res 103:605–621

    Google Scholar 

  • Gawlick HJ, Lein R (1997) Neue stratigraphische und fazielle Daten aus dem Jakobberg- und Wolfdietrichstollen des Hallein - Bad Dürrnberger Salzberges und ihre Bedeutung für die Interpretation der geologischen Verhältnisse im Bereich der Hallein - Berchtesgadener Schollenregion. Geol Paläont Mitt Innsbruck 22:199–225

    Google Scholar 

  • Gawlick HJ, Lein R (2000) Die Salzlagerstätte Hallein - Bad Dürrnberg. Mitt Ges Geol Bergbaustud Österr 44:263–280

    Google Scholar 

  • Gawlick HJ, Missoni S (2019) Middle-Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine-Carpathian-Dinaridic Mountain Range. Gondwana Res 74:144–172

    Google Scholar 

  • Gawlick HJ, Lein R, Piros O, Pytel C (1999) Zur Stratigraphie und Tektonik des Hallein - Bad Dürrnberger Salzberges - Neuergebnisse auf der Basis von stratigraphischen und faziellen Daten (Nördliche Kalkalpen, Salzburg). Abh Geol BA 56(2):69–90

    Google Scholar 

  • Gawlick HJ, Frisch W, Hoxha L, Dumitrică P, Krystyn L, Lein R, Missoni S, Schlagintweit F (2008) Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. Int J Earth Sci 97:865–881

    Google Scholar 

  • Gawlick HJ, Gorican S, Missoni S, Lein R (2012) Late Anisian platform drowning and radiolarite deposition as a consequence of the opening of the Neotethys Ocean (High Karst Nappe, Montenegro). Bull Soc Géol Fr 183:355–365

    Google Scholar 

  • Grainer BRC, Grgasovic T (2000) Les Algues Dasycladales du Permien et du Trias. Geol Croatica 53:1–197

    Google Scholar 

  • Granado P, Roca E, Strauss P, Pelz K, Munoz JA (2018) Structural styles in fold-and-thrust belts involving early salt structures: the Northern Calcareous Alps (Austria). Geology 47:51–54

    Google Scholar 

  • Granier B, Deloffre R (1994) Inventaire critique deas algues dasycladales fossils III partie—les agues dasycladales du Permien et du Trias. Revue de Paléobiologie 14:49–84

    Google Scholar 

  • Haas J, Hamor G, Jambor A, Kovács S, Nagymarosy A, Szederkenyi T (2012) Geology of Hungary. Springer, Berlin, p 244

    Google Scholar 

  • Havrila M (2011) Hronikum: paleogeografia a stratigrafia (vrchný pelsón—tuval), štrukturalizácia a stavba. Geologické práce 117:7–103

    Google Scholar 

  • Kovács S, Sudar M, Gradinaru E, Gawlick HJ, Karamata S, Haas J, Pero C, Gaetani M, Mello J, Polak M, Aljinovic D, Ogorelic B, Kolar-Jurkovsek T, Jurkovsek B, Buser S (2011) Triassic evolution of the tectonostratigraphic units of the Circum-Pannonian Region. Jb Geol BA 151:199–280

    Google Scholar 

  • Kozur H (1973) Faunenprovinzen in der Trias und ihre Bedeutung für die Klärung der Paläogeographie. Geol Paläont Mitt Innsbruck 3(8):1–41

    Google Scholar 

  • Kozur H (1974) Probleme der Triasgliederung und Parallelisierung der germanischen und tethyalen Trias. Teil I: Abgrenzung und Gliederung der Trias. Freiberger Forschungsh C 298:139–197

    Google Scholar 

  • Kozur H (2003) Integrated ammonoid-, conodont and radiolarian zonation of the Triassic. Hall Jb Geowiss B25:49–79

    Google Scholar 

  • Kozur H, Mostler H (1981) Beiträge zur Erforschung der mesozoischen Radiolarien. Teil IV: Thalassospaeracea HAECKEL, 1862, Hexastylacea HAECKEL, 1882 emend. PETRUSAVSKAJA, 1979, Sponguracea HAECKEL, 1862 emend., und weitere triassische Lithocycliacea, Trematodiscacea, Actinommacea und Nasselaria. Geol Palaeont Mitt Innsbruck, Sonderband: pp 1–208, 69 pls

  • Krystyn L, Schöllnberger W (1972) Die Hallstätter Trias des Salzkammergutes. Exkursionsführer Tagung Paläontologische Gesellschaft 1972:61–106

    Google Scholar 

  • Lein R (1985) Das Mesozoikum der Nördlichen Kalkalpen als Beispiel eines gerichteten Sedimentationsverlaufes infolge fortschreitender Krustenausdünnung. Arch f Lagerstättenforsch Geol BA 6:117–128

    Google Scholar 

  • Lein R (1987) Evolution of the Northern Calcareous Alps During Triassic Times. In: Flügel HW, Faupl P (eds) Geodynamics of the Eastern Alps, Deuticke, pp 85–102

  • Lein R, Gawlick HJ (2008) Plattform-Drowning im mittleren Anis—ein überregionaler Event. J Alp Geol 49:61–62

    Google Scholar 

  • Lein R, Gawlick HJ, Krystyn L (2010) Die Annaberger Wende: Neudefinition der Annaberg-Formation als Ausdruck der ersten Öffnungsphase der Neotethys im Bereich der Ostalpen. J Alp Geol 52:165–166

    Google Scholar 

  • Lein R, Krystyn L, Richoz S, Liebermann H (2012) Middle Triassic platform/basin transition along the Alpine passive continental margin facing the Tethys Ocean—the Gamsstein: the rise and fall of a Wetterstein Limestone Platform (Styria, Austria). J Alp Geol 54:471–498

    Google Scholar 

  • Mietto P, Manfrin S, Preto N, Gianolla P, Krystyn L, Roghi G (2003) Proposal of the Global Stratographic section and point (Gssp) for the base of the Ladinian stage (Middle Triassic). GSSP at the base of the Avisianum Subzone (FAD of Aploceras avisianum) in the Bagolino section (Southern Alps, NE Italy). Albertiana 28:26–34

    Google Scholar 

  • Mojsisovics EV (1869) Beiträge zur Kenntnis des Alpinen Muschelkalkes (Zone des Arcestes Studeri). Jb Geol Reichsanstalt 19:567–594

    Google Scholar 

  • Mojsisovics EV (1882) Die Cephalopoden der mediterranen Triasprovinz. Abh Geol Reichsanstalt 10:1–322

    Google Scholar 

  • Moser M, Moshammer B (2018) Die Mitteltrias-Schichtfolge des Kasberg-Gebietes in Oberösterreich (Totengebirgsdecke) und deren Bedeutung für die Mitteltrias-Stratigrafie der Nördlichen Kalkalpen. Geol Alp 15:37–60

    Google Scholar 

  • Moser M, Piros O (2015) Eine stratigrafische Neugliederung der Mitteltrias-Schichtfolge am Schwarzenberg bei Türnitz (Niederösterreich). Geo Alp 12:53–58

    Google Scholar 

  • Moser M, Piros O (2018) Eine Revision des Begriffes „Further Kalk“ bei Furth an der Triesting in den Gutensteiner Alpen (Niederösterreich). Jb Geol BA 158:59–64

    Google Scholar 

  • Narkiewicz K, Szulc J (2004) Controls on migration of conodont fauna in peripheral oceanic areas. An example from the Middle Triassic of the Northern Peri-Tethys. Geobios 37:425–436

    Google Scholar 

  • Ogg JG (2012) Triassic. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The Geological Time Scale 2012. Elsevier, Amsterdam, pp 681–730. https://doi.org/10.1016/B978-0-444-59425-9.00025-1

    Chapter  Google Scholar 

  • Orchard MJ, Lehrmann DJ, Jiayong W, Hongmei W, Taylor LJ (2007) Conodonts from the Olenekian-Anisian boundary beds, Guandao, Guizhou province, China. In: Lucas SG, Spielmann JA (eds) The Global Triassic, vol 41. New Mexico Museum of Nat Hist and Sci Bull, pp 347–354

  • Ott E (1972a) Zur Kalkalgen-Stratigraphie der Alpinen Trias. Mitt Ges Geol u Bergbaustud Österr 21:455–464

    Google Scholar 

  • Ott E (1972b) Die Kalkalgen-Chronologie der alpinen Mitteltrias in Angleichung an die Ammoniten-Chronologie. N Jb Paläontol Abh 141:81–115

    Google Scholar 

  • Ott E (1974) Algen (Dasycladaceae). Catalogum Fossilum Austriae 17b:1–64

    Google Scholar 

  • Pia J (1912) Neue Studien über die triadischen Siphoneae Verticillatae. Beitraege zur Paläontologie Österreich-Ungarn XXV:25–81

    Google Scholar 

  • Pia J (1924) Geologische Skizze der Südwestecke des Steinernen Meeres bei Saalfelden. Sitzber Österr Akad Wiss math-naturwiss Kl Abt 1 132:35–79

    Google Scholar 

  • Pia J (1930) Grundbegriffe der Stratigraphie mit ausführlicher Anwendung auf die europäische Mitteltrias. Deuticke, Wien, p 252

    Google Scholar 

  • Piros O, Preto N (2008) Dasycladalean algae distribution in ammonoid-bearing Middle Triassic platforms (Dolomites, Italy). Facies 54:591–595

    Google Scholar 

  • Piros O, Mandl GW, Lein R, Pavlik W, Berczi-Makk A, Siblik M, Lobitzer H (1994) Dasycladaceen-Assoziationen aus triadischen Seichtwasserkarbonaten des Ostabschnittes der Kalkalpen. Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn. Teil 2:343–362

    Google Scholar 

  • Rettori R, Angiolini L, Muttoni G (1994) Lower and Middle Triassic foraminifera from the Eros Limestone, Hydra Island, Greece. J Micropal 13:25–46

    Google Scholar 

  • Salaj J, Borza K, Samuel O (1983) Triassic foraminifers of the West Carpathians. Geologicky Ustav Dionyza Stura, Bratislava, p 213

    Google Scholar 

  • Salaj J, Trifonova E, Gheorghian D (1988) A biostratigraphic zonation based on benthic foraminifera n the Triassic deposits of the Carpatho-Balkans. Rev de Paléobiol Vol spéc 2:153–159

    Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM Concepts Sedimentol Paleontol 8:1–200

    Google Scholar 

  • Schlager W, Schöllnberger W (1974) Das Prinzip stratigraphischer Wenden in der Schichtfolge der Nördlichen Kalkalpen. Mitt geol Ges Wien 66/67:165–193

    Google Scholar 

  • Schlagintweit F, Rünstler H, Gawlick HJ (2003) Über ein Vorkommen von Physoporella pauciforata (Gümbel 1872) Steinmann 1903 (Dasycladaceae) aus Gutensteiner Kalken (Anis) des Rabenkogel (Steirisches Salzkammergut, Österreich). Jb Geol BA 143(4):605–612

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kounov A, Matenco L, Nievergelt P, Oberhänsli R, Pleuger J, Schefer S, Schuster R, Tomljenovic B, Ustaszewski K, van Hinsbergen DJJ (2020) Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res 78:308–374

    Google Scholar 

  • Schnetzer R (1934) Die Muschelkalkfauna des Öfenbachgrabens bei Saalfelden. Palaeontographica 81:1–160

    Google Scholar 

  • Spengler E (1918) Die Gebirgsgruppe des Plassen und Hallstätter Salzberges im Salzkammergut. Jb Geol Reichsanstalt 1918:285–474

    Google Scholar 

  • Stampfli GM, Borel GD (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: CavazzaW, Roure FM, SpakmanW, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas, The Mediterranean Region From Crust to Mantle. Springer, pp 55–80

  • Stampfli GM, Kozur, HW (2006) Europe from Variscan to the Alpine cycles. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics vol 32. Geological Society Memoir pp 57–82

  • Strauss P, Granado P, Munoz JA (2020) Subsidence analysis of salt tectonics driven carbonate minibasins (Northern Calcareous Alps, Austria). Basin Research 2020. https://doi.org/10.1111/bre.12500

  • Sudar MN, Gawlick HJ, Lein R, Missoni S, Kovács S, Jovanovic D (2013) Depositional environment, age and facies of the Middle Triassic Bulog and Rid formations in the Inner Dinarides (Zlatibor Mountain, SW Serbia): evidence for the Anisian break-up of the Neotethys Ocean. N Jb Geol Pal Abh 269:291–320

    Google Scholar 

  • Tatzreiter F (2001) Noetlingites strombecki (Griepenkerl 1860) und die stratigraphische Stellung der Großreiflinger Ammonitenfaunen (Anis, Steiermark/Österreich). J Alp Geol 45:143–162

    Google Scholar 

  • Tollmann A (1959) Die Hallstätterzone des östlichen Salzkammergutes und ihr Rahmen. Jb Geol BA 103:37–131

    Google Scholar 

  • Tollmann A (1976) Analyse des klassischen nordalpinen Mesozoikums. Deuticke, Wien, p 580

    Google Scholar 

  • Tollmann A (1977) Geologie von Österreich, vol 1. Deuticke, Wien, p 766

    Google Scholar 

  • Tollmann A (1985) Geologie von Österreich, vol 2. Deuticke, Wien, p 710

    Google Scholar 

  • van Hinsbergen DJJ, Torsvik TH, Schmid SM, Matenco CM, Maffione M, Vissers RLM, Spakman GD, V, (2020) Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res 81:79–229

    Google Scholar 

  • Velledits F, Lein R, Krystyn L, Csaba P, Piros O, Blau J (2017) A Reiflingi esemény hatása az Északi-Mészkőalpok és az Aggteleki-hegység középső-triász fejlődésére. Földtani Közlöny 147:3–24

    Google Scholar 

  • Vörös A, Budai T, Haas J, Kovacs S, Kozur H, Palfy J (2003) A proposal for the GSSP at the base of the Reitzi Zone (sensu stricto) at Bed 105 in the Felsöörs section, Balaton Highland, Hungary. Albertiana 28:35–47

    Google Scholar 

  • Wagner L (1970) Die Entwicklung der Mitteltrias in den östlichen Kalkvoralpen im Raum zwischen Enns und Wiener Becken. Unpubl PhD thesis University of Vienna, 202 pp

Download references

Acknowledgements

Leopold Krystyn (Vienna) improved the conodont determinations. Careful reviews by Olga Piros (Budapest) and Rainer Brandner (Innsbruck) are gratefully acknowledged. Henry Liebermann (Salt Lake City) corrected and revised the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-J. Gawlick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawlick, HJ., Lein, R. & Bucur, I.I. Precursor extension to final Neo-Tethys break-up: flooding events and their significance for the correlation of shallow-water and deep-marine organisms (Anisian, Eastern Alps, Austria). Int J Earth Sci (Geol Rundsch) 110, 419–446 (2021). https://doi.org/10.1007/s00531-020-01959-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01959-w

Keywords

Navigation