Employing geochemistry and geochronology to unravel genesis and tectonic setting of iron oxide-apatite deposits of the Bafq-Saghand metallogenic belt, Central Iran

Abstract

The Bafq-Saghand metallogenic belt is located in the central part of the Kerman–Kashmar tectonic zone and contains 39 individual occurrences of iron oxide-apatite ± REE mineralizations. These mineral concentrations, e.g., Chadormalu, Choghart, Sechahun, and Esfordi, comprise a total of ~ 1500 million tons of iron ore with an average grade of ~ 55% Fe. In terms of origin, time, and geodynamic setting, several modes of formation have been suggested for these ore deposits, including magmatic, hydrothermal, and banded iron formation scenarios. In the present study, the tectonic setting and metallogeny of iron oxide-apatites of the Bafq-Saghand belt are investigated utilizing trace element geochemistry, age dating, and oxygen isotope analyses. The geochemical characteristics of apatite and magnetite and the δ18O values of magnetite (from − 0.1 to + 2.2 ‰) indicate a dominantly magmatic-hydrothermal (δ18O >  + 0.9 ‰) formation process, although primary magmatic mineralizations were locally leached and hydrothermally redeposited (e.g., samples with δ18O <  + 0.9 ‰). The Cambrian volcano-sedimentary host rocks to the mineralization is intruded by calc-alkaline tonalite, trondhjemite, granodioritic, dioritic, and granitic rocks that formed in association with subduction of the Proto-Tethys Ocean under the Gondwana supercontinent in the Neoproterozoic to Early Cambrian (525–547 Ma). Additionally, a later geodynamic episode produced intrusions of alkaline syenite and monzosyenite bodies during a continental rifting event. We provide new geochronological constraints for these younger alkaline igneous rocks that document a temporal range from 421 to 447 Ma for their intrusion. In combination with the previously reported overlapping ages of the older calc-alkaline magma bodies (525–547 Ma) with the volcano-sedimentary host rock (528 Ma) and the iron oxide mineralization (510–539 Ma), we can now exclude continental rifting as a geodynamic processes that is linked to ore formation in the region. Our results corroborate that the Bafq iron ore mineralization formed during subduction of the Proto-Tethys Ocean under the Gondwana supercontinent in a near surface continental margin setting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Aftabi A, Mohseni S, Babeki A, Azaraien H (2009) Fluid inclusion and stable isotope of the Esfordi Apatite-Magnetite deposit, Central Iran—a discussion. Econ Geol 104:137–139

    Google Scholar 

  2. Anderson T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Google Scholar 

  3. Angerer T, Hagemann SG, Danyushevsky LV (2012) Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Econ Geol 107:599–644

    Google Scholar 

  4. Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J Petrol 18:319–369

  5. Ayers JC, Watson EB (1993) Apatite/fluid partitioning of rare-earth elements and strontium: experimental results at 1.0 GPa and 1000 C and application to models of fluid-rock interaction. Chem Geol 110:299–314

    Google Scholar 

  6. Balaghi Z, Sadeghian M, Ghasemi H (2011) Petrogenesis of the lower Paleozoic igneous rocks, south of Bahabad (bafq, Central Iran): implication for rifting. Petrology 1:45–64

    Google Scholar 

  7. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262

    Google Scholar 

  8. Belousova EA (2000) Trace elements in zircon and apatite: application to petrogenesis and mineral exploration. Macquarie University, Australia, p 430

    Google Scholar 

  9. Belousova EA, Walters S, Griffin WL, O’Reilly SY (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust J Earth Sci 48:603–619

    Google Scholar 

  10. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Google Scholar 

  11. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Google Scholar 

  12. Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269

    Google Scholar 

  13. Boomeri M (2012) Rare earth minerals in Esfordi magnetite-apatite ore deposit, Bafq district. Ulum-I Zamin J Iran 22:71–82

    Google Scholar 

  14. Boutroy E, Dare SA, Beaudoin G, Barnes SJ, Lightfoot PC (2014) Magnetite composition in Ni–Cu–PGE deposits worldwide: application to mineral exploration. J Geochem Explor 145:64–81

    Google Scholar 

  15. Broughm SG, Hanchar JM, Tornos F, Westhues A, Attersley S (2017) Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Miner Depos 52:1223–1244

    Google Scholar 

  16. Budd AD, Troll VR, Deegan FM, Jolis EM, Smith VC, Whitehouse MJ, Harris C, Freda C, Hilton DR, Halldórsson SA, Bindeman IN (2017) Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. Sci Rep 7:40624

    Google Scholar 

  17. Chai F, Yang F, Liu F, Santosh M, Geng X, Li Q, Liu G (2014) The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: a Kiruna-type iron deposit. Ore Geol Rev 57:482–497

    Google Scholar 

  18. Chen WT, Zhou MF, Gao JF, Hu R (2015) Geochemistry of magnetite from Proterozoic Fe–Cu deposits in the Kangdian metallogenic province, SW China. Miner Depos 50:795–809

    Google Scholar 

  19. Chiu HY, Chung SL, Wu FY, Liu D, Liang YH, Lin IJ, Iizuka Y, Xie LW, Chu MF (2009) Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477:3–19

    Google Scholar 

  20. Clark AH, Kontak DJ (2004) Fe–Ti–P oxide melts generated through magma mixing in the Antauta Subvolcanic Center, Peru: implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Econ Geol 99:377–395

    Google Scholar 

  21. Daliran F (1990) The magnetite apatite deposit of Mishdovan. Eastcentral Iran, an alkaline rhyolite hosted “Kiruna Type” occurrence in the Bafq metallotect (Mineralogic, Petrographic and geochemical study of the ores and the host rocks): Heidelberger Geowiss Abh, 37.

  22. Daliran F (2002) Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district Iran with an emphasis on the REE geochemistry of their apatites. In: Porter TM (ed) Hydrothermal iron oxide copper gold & related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 303–320

    Google Scholar 

  23. Dare SA, Barnes SJ, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Google Scholar 

  24. Dare SA, Barnes SJ, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Depos 49:785–796

    Google Scholar 

  25. Darvishzadeh A (1983) Investigation on Esfordi phosphate deposit. J Sci Univ Tehran. 2–24

  26. Deymar S, Yazdi M, Rezvanianzadeh MR, Behzadi M (2018) Alkali metasomatism as a process for Ti–REE–Y–U–Th mineralization in the Saghand Anomaly 5, Central Iran: insights from geochemical, mineralogical, and stable isotope data. Ore Geol Rev 93:308–336

    Google Scholar 

  27. Dmitrijeva M, Metcalfe AV, Ciobanu CL, Cook NJ, Frenzel M, Keyser WM, Ehrig K (2018) Discrimination and variance structure of trace element signatures in Fe-oxides: a case study of BIF-mineralisation from the Middleback ranges, South Australia. Math Geosci 50:381–415

    Google Scholar 

  28. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

    Google Scholar 

  29. Förster H, Borumandi H (1971) Jungpräkambrische Magnetit-Lava und Magnetit-Tuffe aus dem Zentraliran. Naturwissenschaften 58:524–524

    Google Scholar 

  30. Förster H, Jafarzadeh A (1994) The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721

    Google Scholar 

  31. Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485

    Google Scholar 

  32. Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Google Scholar 

  33. Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969

    Google Scholar 

  34. Ghazi JM, Harris C, Rahgoshay M, Moazzen M (2019) Combined igneous and hydrothermal source for the Kiruna-type Bafq magnetite-apatite deposit in Central Iran; trace element and oxygen isotope studies of magnetite. Ore Geol Rev 105:590–604

    Google Scholar 

  35. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Res 60:940–951

    Google Scholar 

  36. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Google Scholar 

  37. Haghipour A, Pelissier G (1977) Geological map of the Biabanak-Bafq area. Geological Survey of Iran, Tehran

    Google Scholar 

  38. Haghipour A, Bolourchi M, Houshmandzadeh A, Sabzehei M, Stöcklin J, Hubber H, Sluiter W, Aghanabati A (1977) Exploration text of the Ardekan Quderanglemap. Geological Survey of Iran, Tehran, pp 1–88

    Google Scholar 

  39. Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite–monazite relations in the Kiirunavaara magnetite–apatite ore, northern Sweden. Chem Geol 191:47–72

    Google Scholar 

  40. Harris C, Ashwal LD (2002) The origin of low δ 18O granites and related rocks from the Seychelles. Contrib Miner Petrol 143:366–376

    Google Scholar 

  41. Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113:401–412

    Google Scholar 

  42. Heidarian H, Alirezaei S, Lentz DR (2017) Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geol Rev 83:43–62

    Google Scholar 

  43. Heidarian H, Lentz DR, Alirezaei S, McFarlane CR, Peighambari S (2018) Multiple stage ore formation in the chadormalu iron deposit, Bafq Metallogenic Province, Central Iran: evidence from BSE imaging and apatite EPMA and LA-ICP-MS U–Pb Geochronology. Minerals 8:87

    Google Scholar 

  44. Henríquez F, Martin RF (1978) Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Can Mineral 16:581–589

    Google Scholar 

  45. Hitzman MW (2000) Iron Oxide–Cu–Au deposits: what, where, when, and why. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 9–25

    Google Scholar 

  46. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambr Res 58:241–287

    Google Scholar 

  47. Hou T, Zhang Z, Kusky T (2011) Gushan magnetite–apatite deposit in the Ningwu basin, lower Yangtze river valley, SE China: hydrothermal or Kiruna-type? Ore Geol Rev 43:333–346

    Google Scholar 

  48. Hu H, Li JW, Harlov DE, Lentz DR, McFarlane CR, Yang YH (2020) A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China evidence from magnetite geochemistry and multi-mineral U–Pb geochronology. Bulletin 132:899–917

    Google Scholar 

  49. Huang XW, Zhou MF, Qi L, Gao JF, Wang YW (2013) Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic–hydrothermal Fe deposit, NW China. Mineralium Deposita 48:925–946

  50. Huang XW, Gao JF, Qi L, Zhou MF (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite and Re–Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geol Rev 65:900–916

  51. Huckriede R, Kürsten M, Venzlaff H (1962) Zur geologie des gebiets zwischen Kerman und Saghand (Iran). Beihefte zum Geologischen Jahrbuch 51:1–197

    Google Scholar 

  52. Irvine TNJ, Baragar WRAF (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  53. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

  54. Jami M (2005) Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran. Doctoral dissertation, University of New South Wales

  55. Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Econ Geol 102:1111–1128

    Google Scholar 

  56. Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS–a powerful tool for high-precision trace-element analysis in earth sciences: evidence from analysis of selected USGS reference samples. Chem Geol 83:133–148

    Google Scholar 

  57. Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1–8

    Google Scholar 

  58. Kargaranbafghi F, Foeken JP, Neubauer F, Stuart FM (2008) How Chapedony metamorphic core complex (Central Iran) became cool and how it was overprinted by Neogene asthenosphere uprise: inferences from (U–Th)/He thermochronology. Geophysical Research Abstracts 10

  59. Kargaranbafghi F, Neubauer F, Genser J, Faghih A, Kusky T (2012) Mesozoic to Eocene ductile deformation of western Central Iran: from Cimmerian collisional orogeny to Eocene exhumation. Tectonophysics 564:83–100

    Google Scholar 

  60. Kargaranbafghi F, Neubauer F, Genser J (2015) Rapid Eocene extension in the Chapedony metamorphic core complex, Central Iran: constraints from 40 Ar/39 Ar dating. J Asian Earth Sci 106:156–168

    Google Scholar 

  61. Kimura JI, Yamada Y (1996) Evaluation of major and trace element analysis using a flux to some ratio of two to one glass beads. J Mineral Petrol Econ Dev 91:62–72

    Google Scholar 

  62. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594

    Google Scholar 

  63. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Google Scholar 

  64. Kolker A (1982) Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ Geol 77:1146–1158

    Google Scholar 

  65. Le Bas MJ, Lemaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic-rocks based on the total alkali silica diagram. J Petrol 27:745–750

    Google Scholar 

  66. Loberg BE, Horndahl AK (1983) Ferride geochemistry of Swedish Precambrian iron ores. Miner Depos 18:487–504

    Google Scholar 

  67. Ludwig KR (2003) User's manual for IsoPlot 3.0. A geochronological toolkit for Microsoft Excel 71

  68. Majidi SA (2015) Metallogeny of iron oxide, apatite and rare earth elements in the Bafq-Saghand Area, Central Iran. PhD thesis. Tehran, Iran, pp 1–105

  69. Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147–171

    Google Scholar 

  70. Mohseni S, Aftabi A (2012) Comment on “Significance of apatite REE depletion and monazite inclusions in the brecciated Sehchahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry” by Bonyadi, Z., Davidson, GJ, Mehrabi, B., Meffre, S., Ghazban, F [Chem. Geol. 281, 253–269]. Chem Geol 334:378–381

    Google Scholar 

  71. Mohseni S, Aftabi A (2015) Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran: the possible Ediacaran missing link of BIFs in Tethyan metallogeny. Ore Geol Rev 71:215–236

    Google Scholar 

  72. Mokhtari MAA, Zadeh GH, Emami MH (2013) Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. J Earth Syst Sci 122:795–807

    Google Scholar 

  73. Moore F, Modabberi S (2003) Origin of Choghart iron oxide deposit, Bafq mining district, Central Iran: new isotopic and geochemical evidence. J Sci Islam Rep Iran 14:259–270

    Google Scholar 

  74. Mücke A, Younessi R (1994) Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineral Petrol 50:219–244

    Google Scholar 

  75. Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292

    Google Scholar 

  76. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Google Scholar 

  77. Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralisation: examples from the Chilean High Andes and Coastal Cordillerain. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, pp 207–226

  78. Nikolenko AM, Redina AA, Doroshkevich AG, Prokopyev IR, Ragozin AL, Vladykin NV (2018) The origin of magnetite-apatite rocks of Mushgai-Khudag Complex, South Mongolia: mineral chemistry and studies of melt and fluid inclusions. Lithos 320:567–582

    Google Scholar 

  79. Niktabar SM, Omran NR (2018) Geochemistry and petrology of rift-related mafic sills and arc-related Gabbro-Diorite bodies, Northern Bafq District, Central Iran. Acta Geochim 37:180–192

    Google Scholar 

  80. Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Google Scholar 

  81. Nyström JO, Billström K, Henríquez F, Fallick AE, Naslund HR (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 130:177–188

  82. Ovalle JT, La Cruz NL, Reich M, Barra F, Simon AC, Konecke BA, Rodriguez-Mustafa MA, Deditius AP, Childress TM, Morata D (2018) Formation of massive iron deposits linked to explosive volcanic eruptions. Sci Rep 8:1–11

    Google Scholar 

  83. Parák T (1975) The origin of the Kiruna iron ores. Sveriges Geologiska Undersokning

  84. Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

  85. Pecoits E, Gingras MK, Barley ME, Kappler A, Posth NR, Konhauser KO (2009) Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambr Res 172:163–187

    Google Scholar 

  86. Peters ST, Alibabaie N, Pack A, McKibbin SJ, Raeisi D, Nayebi N, Torab F, Ireland T, Lehmann B (2020) Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks. Geology 48:211–215

    Google Scholar 

  87. Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite rocks. Econ Geol 62:303–315

    Google Scholar 

  88. Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Miner Geochem 48:255–292

    Google Scholar 

  89. Porter TM (2011) Advances in the understanding of IOCG and related deposits. Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 3. PGC Publishing, Adelaide, pp 1–109

    Google Scholar 

  90. Ramezani J (1997) Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand area, Central Iran. PhD thesis, St. Louis, Missouri, Washington University, USA, pp 1–416

  91. Ramezani J, Tucker RD (2003) The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Google Scholar 

  92. Ray GE, Webster ICL (2007) Geology and chemistry of the low Ti magnetite-bearing Heff Cu–Au skarn and its associated plutonic rocks, Heffley Lake, south-central British Columbia. Explor Min Geol 16:159–186

    Google Scholar 

  93. Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900

    Google Scholar 

  94. Roberts DE, Hudson GRT (1983) The Olympic Dam copper–uranium–gold deposit, Roxby Downs, South Australia. Econ Geol 78:799–822

    Google Scholar 

  95. Roeder PL, MacArthur D, Ma XP, Palmer GR, Mariano AN (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. Am Miner 72:801–811

    Google Scholar 

  96. Rojas PA, Barra F, Deditius A, Reich M, Simon A, Roberts M, Rojo M (2018) New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geol Rev 93:413–435

    Google Scholar 

  97. Rusk B, Oliver N, Cleverley J, Blenkinsop T, Zhang D, Williams P, Habermann P (2010) Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective. PGC Publishing, Adelaide, pp 201–218

    Google Scholar 

  98. Sahandi M, Baumgartner S, Schmidt K (1984) Contributions to the stratigraphy and tectonics of the Zeber-Kuh range (east Iran). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 168:345–357

    Google Scholar 

  99. Samani BA (1988) Metallogeny of the Precambrian in Iran. Precambr Res 39:85–106

    Google Scholar 

  100. Samani B (1993) Saghand formation, a riftogenic unit of the upper Precambrian in Central Iran. Geosci Q J 2:32–45 ((Persian with English abstract))

    Google Scholar 

  101. Sarlus Z, Andersson UB, Martinsson O, Bauer TE, Wanhainen C, Andersson JB, Whitehouse MJ (2020) Timing and origin of the host rocks to the Malmberget iron oxide-apatite deposit, Sweden. Precambr Res 342:105652

    Google Scholar 

  102. Sawyer EW (2010) Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: microstructures in the residual rocks and source of the fluid. Lithos 116:273–286

    Google Scholar 

  103. Sha LK, Chappell BW (1999) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim Cosmochim Acta 63:3861–3881

    Google Scholar 

  104. Shao WY, Chung SL, Chen WS, Lee HY, Xie LW (2015) Old continental zircons from a young oceanic arc, eastern Taiwan: implications for Luzon subduction initiation and Asian accretionary orogeny. Geology 43:479–482

    Google Scholar 

  105. Simon AC, Knipping J, Reich M, Barra F, Deditius AP, Bilenker L, Childress T (2018) Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the chilean iron belt. In: SEG 2018: Metals, Minerals, and Society. Keystone, Colorado, USA, pp 22–25

  106. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MS, Morris GA, Nasdala L, Norberg N, Schaltegger U (2008) Plešovice zircon–a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

  107. Soheili M, Mahdavi M (1991) Geological Map of Esfordi: Tehran. Geol Surv Iran, scale 1(100):000

    Google Scholar 

  108. Stöcklin J (1968) A review of the structural geology and tectonics of Iran. Bull Am Assoc Petrol Geol 52:1228–1258

    Google Scholar 

  109. Stosch HG, Romer RL, Daliran F, Rhede D (2011) Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Miner Depos 46:9–21

    Google Scholar 

  110. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  111. Sun W, Yuan F, Jowitt SM, Zhou T, Liu G, Li X, Wang F, Troll VR (2019) In situ LA–ICP–MS trace element analyses of magnetite: genetic implications for the Zhonggu orefield, Ningwu volcanic basin, Anhui Province, China. Mineral Depos 54(8):1243–1264

    Google Scholar 

  112. Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67:70–78

    Google Scholar 

  113. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Google Scholar 

  114. Taylor HP (1967) Oxygen isotope studies of hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston Inc., New York, pp 109–142

    Google Scholar 

  115. Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Miner Petrol 19:1–71

    Google Scholar 

  116. Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Miner Petrol 144:22–37

    Google Scholar 

  117. Toplis MJ, Dingwell DB (1996) The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochim Cosmochim Acta 60:4107–4121

    Google Scholar 

  118. Torab FM (2008) Geochemistry and metallogeny of magnetite apatite deposits of the Bafq Mining District, Central Iran. PhD thesis, TU Clausthal, Germany, pp 1–131

  119. Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Miner Mag 71:347–363

    Google Scholar 

  120. Tornos F, Velasco F, Hanchar JM (2017) The magmatic to magmatic-hydrothermal evolution of the El Laco deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Econ Geol 112:1595–1628

    Google Scholar 

  121. Troll VR, Weis F, Jonsson E, Andersson UB, Majidi SA, Högdahl K, Harris C, Millet MA, Chinnasamy SS, Kooijman E, Nilsson KP (2019) Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nat Commun 10:1712

    Google Scholar 

  122. Valizadeh MV, Sharifi A (2004) Geochemical study of “Arash Syenite” (Central Iran) with special emphasis on alkali metasomatism. Geosciences 12:2–15

    Google Scholar 

  123. Vapnik Y, Bushmin S, Chattopadhyay A, Dolivo-Dobrovolsky D (2007) Fluid inclusion and mineralogical study of vein-type apatite ores in shear zones from the Singhbhum metallogenetic province, West Bengal, India. Ore Geol Rev 32:412–430

  124. Verdel C, Wernicke BP, Ramezani J, Hassanzadeh J, Renne PR, Spell TL (2007) Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geol Soc Am Bull 119:961–977

    Google Scholar 

  125. Westhues A, Hanchar JM, Whitehouse MJ, Martinsson O (2016) New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna district, Norrbotten, Sweden. Econ Geol 111:1595–1618

    Google Scholar 

  126. Westhues A, Hanchar JM, LeMessurier MJ, Whitehouse MJ (2017) Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 45:571–574

    Google Scholar 

  127. Westhues A, Hanchar JM, Voisey CR, Whitehouse MJ, Rossman GR, Wirth R (2017) Tracing the fluid evolution of the Kiruna iron oxide apatite deposits using zircon, monazite, and whole rock trace elements and isotopic studies. Chem Geol 466:303–322

    Google Scholar 

  128. Williams GJ, Houshmandzadeh A (1966) A petrological and genetic study of the Choghart iron ore body and the surrounding rocks. Geological Survey of Iran, Tehran, p 18

    Google Scholar 

  129. Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper–gold deposits: geology, space-time distribution, and possible modes of origin. Econ Geol 371–405

  130. Wood SA (1990a) The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 82:159–186

    Google Scholar 

  131. Wood SA (1990b) The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350 C at saturation water vapor pressure. Chem Geol 88:99–125

    Google Scholar 

  132. Yang F, Mao J, Liu F, Chai F, Geng X, Zhang Z, Guo X, Liu G (2013) A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China. Ore Geol Rev 54:1–16

    Google Scholar 

  133. Yassaghi A, Masoodi M (2011) A metamorphic core complex model for the host of uranium mineralization in the Khoshoumi Mountain, central Iran. Resour Geol 61:259–269

    Google Scholar 

  134. Yu J, Chen Y, Mao J, Pirajno F, Duan C (2011) Review of geology, alteration and origin of iron oxide–apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze River Valley, eastern China: implications for ore genesis and geodynamic setting. Ore Geol Rev 43:170–181

    Google Scholar 

  135. Yuan H, Gao S, Liu X, Li H, Günther D, Wu F (2004) Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry. Geostand Geoanalyt Res 28:353–370

  136. Zhang Z, Hong W, Jiang Z, Duan S, Li F, Shi F (2014) Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geol Rev 57:425–440

  137. Zhou T, Fan Y, Yuan F, Zhang L, Qian B, Ma L, Yang X (2013) Geology and geochronology of magnetite–apatite deposits in the Ning-Wu volcanic basin, eastern China. J Asian Earth Sci 66:90–107

    Google Scholar 

Download references

Acknowledgements

This is a contribution to Geological Survey of Iran for the XRF, ICP-OES and ICP-MS analysis at Central laboratory in Tehran and we would like to thak Mohamad Taghi Korei and Mohammadreza Hezareh for the analysis coordination in the Geological Survey of Iran, Tehran, Iran. The authors also acknowledge Chris Harris for O isotope analysis in Department of Geological Science in University of Cape Town. They also thank Mohammad Lotfi and Mohammad Hashem Emami for help during fieldwork and discussion of their study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Afshin Majidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majidi, S.A., Omrani, J., Troll, V.R. et al. Employing geochemistry and geochronology to unravel genesis and tectonic setting of iron oxide-apatite deposits of the Bafq-Saghand metallogenic belt, Central Iran. Int J Earth Sci (Geol Rundsch) 110, 127–164 (2021). https://doi.org/10.1007/s00531-020-01942-5

Download citation

Keywords

  • Kiruna-type ore deposits
  • Bafq-saghand metallogenic belt
  • Central Iran zone
  • Calc–alkaline magmatism
  • Alkaline magmatism
  • Geochronology
  • Geochemistry