Skip to main content

Neoarchean–Paleoproterozoic crustal growth and tectonic evolution of the Trans-North China Orogen, North China Craton: evidence from granite–greenstone successions in the Dengfeng Complex

Abstract

Granite–greenstone successions and associated tonalite–trondhjemite–granodiorite (TTG) suites constitute dominant components of Precambrian cratons. Here, we present petrology, geochemistry, zircon U–Pb geochronology, and Lu–Hf isotopes on monzonite, granodiorite, granite, and amphibolite from the Dengfeng Complex in the southern part of the North China Craton (NCC). Zircon U–Pb data yield weighted mean 207Pb/206Pb ages of 2498 ± 6 Ma for monzonite, 2481 ± 16 Ma for granodiorite, and 2475 ± 21 Ma for granite. Lu–Hf isotope systematics show εHf(t) values ranging from 1.3 to 6.7 and crustal model ages (\(T_{{{\text{DM}}}}^{{\text{C}}}\)) in the range of 2584–2934 Ma for the rocks. The monzonite, granodiorite, and granite show moderate total rare-earth element (REE) contents, enrichment in light REEs (LREE) and depletion in heavy REEs (HREE), negative Nb, Ta, and Ti anomalies, high Al2O3, Sr/Y, and (La/Yb)N ratios, with low Cr and Ni, indicating that the magma was possibly sourced from partial melting of the lower crust. The geochemical features of amphibolites are characterized by low SiO2, Na2O, K2O, Sr/Y, (La/Yb)N and high FeO, low total REEs values, limited LREE/HREE fractionation, and absence of obvious Ce anomaly, showing similarity to island arc magmatic rocks. Our results are consistent with the model of subduction and arc–continent collision in the Trans-North China Orogen during the Neoarchean to Paleoproterozoic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, cal-calkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Google Scholar 

  2. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Google Scholar 

  3. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Google Scholar 

  4. Carlson RW, Pearson DG, James DE (2005) Physical, chemical and chronological characteristics of continental mantle. Rev Geophys 43:1–24

    Google Scholar 

  5. Condie KC (1989) Geochemical changes in basalts and andesites across the Archean–Proterozoic boundary: identification and significance. Lithos 23:1–18

    Google Scholar 

  6. Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Google Scholar 

  7. Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180:227–236

    Google Scholar 

  8. Condie KC, Belousova E, Griffin WL, Sircombe KN (2009) Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res 15:228–242

    Google Scholar 

  9. Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Miner Geochem 53:469–500

    Google Scholar 

  10. Deng H, Kusky TM, Polat A, Wang C, Wang L, Li YX, Wang JP (2016) A 2.5 Ga fore–arc subduction-accretion complex in the Dengfeng Granite–Greenstone Belt, Southern North China Craton. Precambrian Res 275:241–264

    Google Scholar 

  11. Deng J, Wang CM, Bagas L, Santosh M, Yao EY (2018) Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth Sci Rev 182:251–272

    Google Scholar 

  12. Diwu CR, Sun Y, Yuan HL, Wang HL, Zhong XP, Liu XM (2008) U–Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chin Sci Bull 53:2828–2839

    Google Scholar 

  13. Diwu CR, Sun Y, Lin CL, Wang HL (2010) LA–(MC)–ICPMS U–Pb zircon geochronology and Lu–Hf isotope compositions of the Taihua Complex on the southern margin of the North China Craton. Chin Sci Bull 55:2557–2571

    Google Scholar 

  14. Diwu CR, Sun Y, Guo AL, Wang HL, Liu XM (2011) Crustal growth in the North China Craton at ~2.5 Ga: evidence from in situ zircon U–Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng Complex. Gondwana Res 20:149–170

    Google Scholar 

  15. Diwu CR, Sun Y, Zhao Y, Lai SC (2014) Early Paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton. Precambrian Res 255:627–640

    Google Scholar 

  16. Dong MM, Wang CM, Yao EY, He XY, Xia JS, Wang Q, Chen JY, Wang CN, Yang LF, Du B, Shi KX (2018) LA–ICP–MS zircon U–Pb geochronology of the Taihua complex in Lushan area of Henan Province and its geological implications. Acta Petrol Miner 37:1–18 (in Chinese with English abstract)

    Google Scholar 

  17. Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res [Solid Earth] 95:21503–21521

    Google Scholar 

  18. Frost BR, Arculus RJ, Barnes CG, Collins WJ, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rocks. J Petrol 42:2033–2048

    Google Scholar 

  19. Gao P, Santosh M (2019) Building the Wutai arc: insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton. Precambrian Res 333:105429

    Google Scholar 

  20. Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van-Achterbergh E, O'Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Google Scholar 

  21. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. Geol Soc Lond Spec Publ 19:67–81

    Google Scholar 

  22. Heilimo E, Halla J, Hölttä P (2010) Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115:27–39

    Google Scholar 

  23. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Miner Geochem 53:27–62

    Google Scholar 

  24. Huang XL, Wilde SA, Zhong JW (2013) Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean–Proterozoic boundary. Precambrian Res 233:337–357

    Google Scholar 

  25. Jayananda M, Aadhiseshan KR, Kusiak MA, Wilde SA, Sekhamo KU, Guitreau M, Santosh M, Gireesh RV (2020) Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India. Gondwana Res 78:228–260

    Google Scholar 

  26. Jiang N, Guo JH, Zhai MG, Zhang SQ (2010) ~2.7 Ga crust growth in the North China craton. Precambrian Res 179:37–49

    Google Scholar 

  27. Kröner A, Compston W, Zhang GW, Guo AL, Todt W (1988) Age and tectonic setting of late Archean greenstone–gneiss terrain in Henan province, China, as revealed by single-grain zircon dating. Geology 16:211–215

    Google Scholar 

  28. Kusky TM, Li JH (2010) Origin and emplacement of Archean ophiolites of the Central Orogenic Belt, North China Craton. J Earth Sci 21:744–781

    Google Scholar 

  29. Kusky TM, Zhai MG (2012) The Neoarchean Ophiolite in the North China Craton: early Precambrian plate tectonics and scientific debate. J Earth Sci 23:277–284

    Google Scholar 

  30. Kusky TM, Polat A, Windley BF, Burke KC, Dewey JF, Kidd WSF, Maruyama S, Wang JP, Deng H, Wang ZS, Wang C, Fu D, Li XW, Peng HT (2016) Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents. Earth Sci Rev 162:387–432

    Google Scholar 

  31. Lao ZQ, Wang SY (1999) New advances in the study of the Dengfeng Complex in the Songshan Region, Henan Province. Reg Geol China 18:9–16 (in Chinese with English abstract)

    Google Scholar 

  32. Le-Bas MJ, Le-Maitre RW, Steckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  33. Li SG, Hart SR, Guo AL, Zhang GW (1987) Whole-rock Sm–Nd isotopic age of the Dengfeng Group in central Henan Province and its tectonic significance. Chin Sci Bull 22:1728–1731 (in Chinese)

    Google Scholar 

  34. Li SS, Santosh M, Teng XM, He XF (2016) Paleoproterozoic arc–continent collision in the North China Craton: evidence from the Zanhuang Complex. Precambrian Res 286:281–305

    Google Scholar 

  35. Li SS, Santosh M, Ganguly S, Thanooja PV, Sajeev K, Pahari A, Manikyamba C (2018) Neoarchean microblock amalgamation in southern India: evidence from the Nallamalai Suture Zone. Precambrian Res 314:1–27

    Google Scholar 

  36. Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircon from mantle xenoliths. J Petrol 51:537–571

    Google Scholar 

  37. Liu CH, Zhao GC, Sun M, He YL (2012) Detrital zircon U–Pb dating, Hf isotopes and whole–rock geochemistry from the Songshan Group in the Dengfeng Complex: constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Res 192–195:1–15

    Google Scholar 

  38. Liu CH, Zhao GC, Liu FL, Han YG (2014) Nd isotopic and geochemical constraints on the provenance and tectonic setting of the low-grade meta-sedimentary rocks from the Trans-North China Orogen, North China Craton. J Asian Earth Sci 94:173–189

    Google Scholar 

  39. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Google Scholar 

  40. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Google Scholar 

  41. Moyen JF, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Google Scholar 

  42. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  43. Peng P, Zhai MG, Guo JH, Kusky TM, Zhao TP (2007) Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China Craton. Gondwana Res 12:29–46

    Google Scholar 

  44. Polat A (2012) Growth of Archean continental crust in oceanic island arcs. Geology 40:383–384

    Google Scholar 

  45. Polat A, Kerrich R (2006) Reading the geochemical fingerprints of Archean hot subduction volcanic rocks: evidence for accretion and crustal recycling in a mobile tectonic regime. Geophys Monogr Ser 164:189–213

    Google Scholar 

  46. Polat A, Kerrich R, Wyman DA (1998) The late Archean Schreiber Hemlo and White River Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction accretion complexes. Tectonophysics 289:295–326

    Google Scholar 

  47. Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425:605–609

    Google Scholar 

  48. Rickwood PC (1989) Boundary lines within petrologic diagrams, which use oxides of major and minor elements. Lithos 22:247–263

    Google Scholar 

  49. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  50. Sang LK, Ma CQ (2012) Petrology. Geol Publ House, Beijing, pp 1–257 (in Chinese)

    Google Scholar 

  51. Santosh M (2010) Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Res 178:149–167

    Google Scholar 

  52. Santosh M, Maruyama S, Komiya T, Yamamoto S (2010) Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core mantle boundary. Geol Soc Lond Spec Publ 338:77–116

    Google Scholar 

  53. Santosh M, Yang QY, Shaji E, Tsunogae T, Mohan MR, Satyanarayanan M (2015) An exotic Mesoarchean microcontinent: the Coorg Block, southern India. Gondwana Res 27:165–195

    Google Scholar 

  54. Santosh M, Gao P, Yu B, Yang CX, Kwon S (2020) Neoarchean suprasubduction zone ophiolite discovered from the Miyun Complex: implications for Archean–Paleoproterozoic Wilson cycle in the North China Craton. Precambrian Res 342:105710

    Google Scholar 

  55. Shi KX, Wang CM, Bagas L, Du B, Yang LF, Chen Q (2019a) Genesis of the Hanwang Fe deposit in Neoarchean granite–greenstone succession of the eastern North China Craton. Ore Geol Rev 105:387–403

    Google Scholar 

  56. Shi KX, Wang CM, Santosh M, Du B, Yang LF, Chen Q (2019b) New insights into Neoarchean–Paleoproterozoic crustal evolution in the North China Craton: evidence from zircon U–Pb geochronology, Lu–Hf isotopes and geochemistry of TTGs and greenstones from the Luxi Terrane. Precambrian Res 327:232–254

    Google Scholar 

  57. Smithies RH (2000) The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Google Scholar 

  58. Song B, Nutman AP, Liu DY, Wu JS (1996) 3800 to 2500 Ma crustal evolution in Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94

    Google Scholar 

  59. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  60. Tang L, Santosh M (2018) Neoarchean–Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: an overview from the central segment of the Trans-North China Orogen. Earth-Sci Rev 182:1–27

    Google Scholar 

  61. Tang L, Santosh M, Tsunogae T, Teng XM (2016) Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: evidence from the Fuping Complex. Lithos 248–251:324–338

    Google Scholar 

  62. Tarney J, Windley BF (1977) Chemistry, thermal gradients and evolution of the lower continental crust. J Geol Soc 134:153–172

    Google Scholar 

  63. Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX, Gao LZ (2009) Early Precambrian crustal evolution in the Dengfeng Area, Henan Province (eastern China): constraints from geochemistry and SHRIMP U–Pb zircon dating. Acta Geol Sin 83:982–999 (in Chinese with English abstract)

    Google Scholar 

  64. Wan YS, Zhang YH, Williams IS, Liu DY, Dong CY, Fan RL, Shi YR, Ma MZ (2013) Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton. Chem Geol 352:108–124

    Google Scholar 

  65. Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW, Liu DY (2017) Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTGs in the North China Craton: a synthesis. Acta Petrol Sin 33:1405–1419 (in Chinese with English abstract)

    Google Scholar 

  66. Wang JY, Santosh M (2019) Eoarchean to Mesoarchean crustal evolution in the Dharwar craton, India: evidence from detrital zircon U–Pb and Hf isotopes. Gondwana Res 72:1–14

    Google Scholar 

  67. Wang W, Liu SW, Santosh M, Wang GH, Bai X, Guo RR (2015) Neoarchean intra-oceanic arc system in the western Liaoning Province: implications for early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth Sci Rev 150:329–364

    Google Scholar 

  68. Wang C, Song SG, Niu YL, Wei CJ, Su L (2016a) TTG and potassic granitoids in the eastern North China Craton: making Neoarchean upper continental crust during micro-continental collision and post-collisional extension. J Petrol 57:1775–1810

    Google Scholar 

  69. Wang CM, Lu YJ, He XY, Wang QH, Zhang J (2016b) The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: insight into rift-related magmatism. Precambrian Res 277:26–46

    Google Scholar 

  70. Wang CM, Deng J, Bagas L, Wang Q (2017a) Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen. Gondwana Res 50:293–310

    Google Scholar 

  71. Wang X, Huang XL, Yang F, Luo ZX (2017b) Late Neoarchean magmatism and tectonic evolution recorded in the Dengfeng Complex in the southern segment of the Trans-North China Orogen. Precambrian Res 302:180–197

    Google Scholar 

  72. Wang CM, Bagas L, Deng J, Dong MM (2018) Crustal architecture and its controls on mineralisation in the North China Craton. Ore Geol Rev 98:109–125

    Google Scholar 

  73. Wang CM, He XY, Carranza EJM, Cui CM (2019) Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: implications for the Columbia supercontinent. Geosci Front 10:1543–1560

    Google Scholar 

  74. Wang CM, Deng J, Bagas L, He XY, Zhang J (2020) Origin and classification of the Late Triassic Huaishuping gold deposit in the eastern part of the Qinling-Dabie Orogen, China: implications for gold metallogeny. Miner Deposita. https://doi.org/10.1007/s00126-020-01004-5

    Article  Google Scholar 

  75. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Google Scholar 

  76. Wu YB, Zheng YF (2004) Zircon genetic mineralogy and its restriction on the interpretation of U–Pb age. Chin Sci Bull 49:1589–1604 (in Chinese)

    Google Scholar 

  77. Wu FY, Xu YG, Gao S, Zheng JP (2008) Lithospheric thinning and destruction of the North China Craton. Acta Petrol Sin 24:1145–1174 (in Chinese with English abstract)

    Google Scholar 

  78. Wyman DA, Hollings P (2006) Late Archean convergent margin volcanism in the Superior Province: a comparison of the Blake River Group and Contederation Assemblage. Geophys Monogr Ser 164:215–237

    Google Scholar 

  79. Zhai MG (2011) Cratonization and the Ancient North China Continent: a summary and review. China Earth Sci 54:1110–1120

    Google Scholar 

  80. Zhai MG (2012) Evolution of the North China Craton and early plate tectonic. Acta Geol Sin 86:1335–1349 (in Chinese with English abstract)

    Google Scholar 

  81. Zhai MG, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Google Scholar 

  82. Zhai MG, Guo JH, Liu WJ (2005) Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J Asian Earth Sci 24:547–561

    Google Scholar 

  83. Zhang J, Zhang HF, Lu XX (2013) Zircon U–Pb age and Lu–Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton. Precambrian Res 226:1–20

    Google Scholar 

  84. Zhang J, Zhang HF, Li L, Wang JL (2018) Neoarchean–Paleoproterozoic tectonic evolution of the southern margin of the North China Craton: insights from geochemical and zircon U–Pb–Hf–O isotopic study of metavolcanic rocks in the Dengfeng complex. Precambrian Res 318:103–121

    Google Scholar 

  85. Zhao GC (2007) When did plate tectonics begin on the North China Craton? Insights from metamorphism. Earth Sci Front 14:19–32

    Google Scholar 

  86. Zhao GC (2009) Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion. Acta Petrol Sin 25:1772–1792 (in Chinese with English abstract)

    Google Scholar 

  87. Zhao GC, Zhai MG (2013) Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res 23:1207–1240

    Google Scholar 

  88. Zhao TP, Zhou MF, Zhai MG, Xia B (2002) Paleoproterozoic rift-related volcanism of the Xiong’er Group, North China Craton: implications for the breakup of Columbia. Int Geol Rev 44:336–351

    Google Scholar 

  89. Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202

    Google Scholar 

  90. Zhao TP, Chen W, Zhou MF (2009) Geochemical and Nd–Hf isotopic constraints on the origin of the ~1.74 Ga Damiao anorthosite complex, North China Craton. Lithos 113:673–690

    Google Scholar 

  91. Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM, Wu FY (2006) Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chem Geol 231:135–158

    Google Scholar 

  92. Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX, Wu FY (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150

    Google Scholar 

  93. Zhou YY (2011) The early Precambrian magmatism and crustal evolution in the southern margin of the North China Craton: a case study on the Songshan and Lushan Areas. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Doctoral Thesis, pp 1–67 (in Chinese with English Abstract)

  94. Zhou YY, Zhao TP, Xue LW, Wang SY, Gao JF (2009) Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area, North China Craton. Acta Petrol Sin 25:331–347 (in Chinese with English abstract)

    Google Scholar 

  95. Zhou YY, Zhao TP, Wang CY, Hu GH (2011) Geochronology and geochemistry of 2.5 to 2.4 Ga granitic plutons from the southern margin of the North China Craton: implications for a tectonic transition from arc to post-collisional setting. Gondwana Res 20:171–183

    Google Scholar 

  96. Zhou YY, Zhai MG, Zhao TP, Lan ZW, Sun QY (2014a) Geochronological and geochemical constraints on the petrogenesis of the early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. J Asian Earth Sci 94:190–204

    Google Scholar 

  97. Zhou YY, Zhao TP, Zhai MG, Gao JF, Sun QY (2014b) Petrogenesis of the Archean tonalite–trondhjemite–granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: implications for crustal accretion and transformation. Precambrian Res 255:514–537

    Google Scholar 

  98. Zhou YY, Zhao TP, Zhai MG, Gao JF, Lan ZW, Sun QY (2015) Petrogenesis of the 2.1 Ga Lushan garnet-bearing quartz monzonite on the southern margin of the North China Craton and its tectonic implications. Precambrian Res 256:241–255

    Google Scholar 

  99. Zhou YY, Zhao TP, Sun QY, Zhai MG, Lan ZW, Hofmann A (2017) Petrogenesis of the Neoarchean diorite–granite association in the Wangwushan area, southern North China Craton: implications for continental crust evolution. Precambrian Res 326:84–104

    Google Scholar 

Download references

Acknowledgements

This research is jointly supported by the National Natural Science Foundation of China (Number 41872080), the Fundamental Research Funds for the Central Universities of China (Number 2652017223), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Number MSFGPMR201804). We thank the team members from China University of Geosciences (Beijing) for their support in the field. We are also grateful to the anonymous referees for their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changming Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Wang, C., Santosh, M. et al. Neoarchean–Paleoproterozoic crustal growth and tectonic evolution of the Trans-North China Orogen, North China Craton: evidence from granite–greenstone successions in the Dengfeng Complex. Int J Earth Sci (Geol Rundsch) 109, 2801–2823 (2020). https://doi.org/10.1007/s00531-020-01928-3

Download citation

Keywords

  • Zircon U–Pb geochronology
  • Lu–Hf isotopes
  • Geochemistry
  • Crustal growth and tectonic evolution
  • Dengfeng complex
  • North China craton