Skip to main content
Log in

Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): new constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mts. Kalnik and Požeška gora volcaniclastic sequences hold valuable information concerning the Miocene syn-rift evolution of the North Croatian Basin, and the evolution of the Carpathian–Pannonian Region and the Central Paratethys. We present volcanological, high-precision geochronological, and compositional data of volcanic glass to constrain their tephrochronology, magmatic provenance, and timing of the initial Central Paratethys flooding of the North Croatian Basin. Based on CA-ID-TIMS U–Pb zircon ages (18.060 ± 0.023 Ma for Mt. Kalnik and 15.345 ± 0.020 Ma for Mt. Požeška gora) and coeval 40Ar/39Ar sanidine ages (18.14 ± 0.38 Ma and 18.25 ± 0.38 Ma for Mt. Kalnik and 15.34 ± 0.32 Ma and 15.43 ± 0.32 Ma for Mt. Požeška gora), Mt. Kalnik rhyolitic massive ignimbrites and Mt. Požeška gora rhyolitic primary volcaniclastic turbidites are coeval with Carpathian–Pannonian Region Miocene post-collisional silicic volcanism, which was caused by lithospheric thinning of the Pannonian Basin. Their affiliation to Carpathian–Pannonian Region magmatic activity is supported by their subduction-related geochemical signatures. Although Mts. Kalnik and Požeška gora volcaniclastics are coeval with the Bükkalja Volcanic Field Csv-2 rhyolitic ignimbrites, North Alpine Foreland Basin, Styrian Basin, Vienna Basin, and Dinaride Lake System bentonites and volcaniclastic deposits, reliable tephrochronological interpretations based on comparison of volcanic glass geochemical composition are not possible due to a lack of data and/or methodological discrepancies. Our new high-precision geochronology data prove that the initial Middle Miocene (Badenian) marine flooding of parts of the North Croatian Basin occurred at least ~ 0.35 Ma (during the NN4 Zone) before the generally accepted ~ 15 Ma maximum flooding age at the basin scale, calibrating the timing of the onset of the widespread “mid-Langhian” Central Paratethys flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

adopted from Branney and Kokelaar (2002)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this article (and its supplementary information files).

References

  • Andersen NL, Jicha BR, Singer BS, Hildreth W (2017) Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1709581114

    Article  Google Scholar 

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101:2377–2404

    Google Scholar 

  • Balázs A, Matenco L, Magyar I, Horváth F, Cloething S (2016) The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics 35:1526–1559

    Google Scholar 

  • Bowring JF, McLean NM, Bowring SA (2011) Engineering cyber infrastructure for U–Pb geochronology: tripoli and U-Pb_Redux. Geochem Geophys Geosyst 12:1–19

    Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London, London, p 15227

    Google Scholar 

  • Brown RJ, Branney MJ (2004) Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273-ka Poris Formation. Bull Volcanol 66:392–416

    Google Scholar 

  • Brlek M, Iveša LJ, Brčić V, Santos A, Ćorić S, Milošević M, Avanić R, Devescovi M, Pezelj Đ, Mišur I, Miknić M (2018) Rocky-shore unconformities marking the base of Badenian (Middle Miocene) transgressions on Mt. Medvednica basement (North Croatian Basin, Central Paratethys). Facies 64:25

    Google Scholar 

  • Brown RJ, Andrews GDM (2015) Deposits of pyroclastic density currents. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Elsevier, Amsterdam, pp 631–648

    Google Scholar 

  • Bull SW, Cas RAF (2000) Distinguishing base-surge deposits and volcaniclastic fluviatile sediments: an ancient example from the Lower Devonian Snowy River Volcanics, south-Eastern Australia. Sedimentology 47:87–98

    Google Scholar 

  • Carey SN, Schneider J-L (2011) Volcaniclastic processes and deposits in the deep-sea. In: Hüneke H, Mulder T (eds) Deep-sea sediments. Developments in sedimentology. Elsevier, Amsterdam, pp 457–51563

    Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions: modern and ancient. Chapmann & Hall, London

    Google Scholar 

  • Cassidy M, Watt SFL, Palmer MR, Trofimovs J, Symons W, Maclachlan SE, Stinton AJ (2014) Construction of volcanic records from marine sediment cores: a review and case study (Montserrat, West Indies). Earth Sci Rev 138:137–155

    Google Scholar 

  • Condon DJ, Schoene B, McLean NM, Bowring SA, Parrish RR (2015) Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim Cosmochim Acta 164:464–480

    Google Scholar 

  • Ćorić S, Pavelić D, Rögl F, Mandic O, Vrabac S, Avanić R, Jerković L, Vranjković A (2009) Revised Middle Miocene datum for initial marine flooding of North Croatian Basin (Pannonian Basin Systems, Central Paratethys). Geol Croat 62:31–43

    Google Scholar 

  • Cvetković V, Poli G, Christofides G, Koroneos A, Pécskay Z, Resimić-Šarić K, Erić V (2007) The Miocene granitoid rocks of Mt. Bukulja (central Serbia): evidence for Pannonian extension-related granitoid magmatism in the northern Dinarides. Eur J Mineral 19:513–532

    Google Scholar 

  • de Leeuw A, Mandic O, Vranjković A, Pavelić D, Harzhauser M, Krijgsman W, Kuiper KF (2010) Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaoegeogr Palaeoclimatol Palaeoecol 292:155–167

    Google Scholar 

  • de Leeuw A, Mandic O, Krijgsman W, Kuiper K, Hrvatović H (2012) Paleomagnetic and geochronological constraints on the geodynamic evolution of the Central Dinarides. Tectonophysics 530:286–298

    Google Scholar 

  • de Leeuw A, Tulbure M, Kuiper KF, Melinte-Dobrinescu MC, Stoica M, Krijgsman W (2018) New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian Salinity Crisis: indications for tectonic improvement of basin interconnectivity in Southern Europe. Glob Planet Change 169:1–15

    Google Scholar 

  • Di Capua A, Groppelli G (2016) Application of actualistic models to unravel primary volcanic control on sedimentation (Taveyanne Sandstones, Oligocene Northalpine Foreland Basin). Sediment Geol 336:147–160

    Google Scholar 

  • Di Capua A, Groppelli G (2018) The riddle of volcaniclastic sedimentation in ancient deep-water basins: a discussion. Sediment Geol 378:52–60

    Google Scholar 

  • Douillet GA, Taisne B, Tsang-Hin-Sun Ѐ, Müller SK, Kueppers U, Dingwell DB (2015) Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers for granular shear, dynamic pore pressure, ballistic impact and shock waves. Solid Earth 6:553–572

    Google Scholar 

  • Ellis BS, Schmitz MD, Hill M (2019) Reconstructing a Snake River Plain “super-eruption” via compositional fingerprinting and high-precision U/Pb zircon geochronology. Contrib Mineral Petrol 174:101

    Google Scholar 

  • Fodor LI, Gerdes A, Dunkl I, Koroknai B, Pécskay Z, Trajanova M, Horváth P, Vrabec M, Jelen B, Balogh K, Frisch W (2008) Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine–Pannonian–Dinaridic junction, Slovenia. Swiss J Geosci 101:255–271

    Google Scholar 

  • Fodor LI, Márton E, Ma V, Koronkai B, Trajanova M, Mi V (2020) Relationship between magnetic fabrics and deformation of the Miocene Pohorje intrusions and surrounding sediments (Eastern Alps). Int J Earth Sci. https://doi.org/10.1007/s00531-020-01846-4

    Article  Google Scholar 

  • Gaynor SP, Rosera JM, Coleman DS (2019) Intrusive history of the Oligocene Questa porphyry molybdenum deposit, New Mexico. Geosphere 15:548–575

    Google Scholar 

  • GKRH (2009) Geološka karta Republike Hrvatske (Geological Map of the Republic of Croatia) scale 1:300.000. Hrvatski geološki institut (Croatian Geological Survey), Zagreb, 1 sheet

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The Geologic Time Scale 2012. Elsevier, Oxford

    Google Scholar 

  • Gubler T (2009) Blatt 1111 Albis (mit Beitrag von P. Nagy). Geol. Atlas Schweiz 1:25.000, Erläut: 134. Bundesamt für Landestopographie swisstopo

  • Günther D, Jackson SE, Longerich HP (1999) Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochim Acta Part B 54:381–409

    Google Scholar 

  • Hajek-Tadesse V, Belak M, Sremac J, Vrsaljko D, Wacha L (2009) Early Miocene ostracods from the Sadovi section (Mt Požeška gora, Croatia). Geol Carpath 60:251–262

    Google Scholar 

  • Halamić J, Belak M, Pavelić D, Avanić R, Filjak R, Šparica M, Brkić M, Kovačić M, Vrsaljko D, Banak A, Crnko J (2019) Basic geological map 1:50.000. Sheet Požeška gora. Croatian Geological Survey, Zagreb

    Google Scholar 

  • Handler R, Ebner F, Neubauer F, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from the Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpath 57:483–494

    Google Scholar 

  • Handy MR, Ustaszewski K, Kissling E (2014) Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int J Earth Sci (Geol Rundsch) 104:1–26

    Google Scholar 

  • Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean Area. Geological Society of America, Boulder, pp 67–92418

    Google Scholar 

  • Harangi S, Mason PRD, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geotherm Res 143:237–257

    Google Scholar 

  • Harangi S, Downes H, Thirlwall M, Gméling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian Arc, Eastern Central Europe. J Petrol 48:2261–2287

    Google Scholar 

  • Hernitz Kučenjak M, Premec Fućek V, Krizmanić K, Tadej J, Zlatar S, Matošević M (2018) Karpatian and Badenian transgressions in Croatian part of the Pannonian Basin System (biostratigraphy and palaeoenvironments). Forams 2018. Temporary Abstract Collection, Edinburgh, pp 273–274

    Google Scholar 

  • Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335:1610–1614

    Google Scholar 

  • Hildreth W, Firestein J (2012) The Novarupta–Katmai eruption of 1912—largest eruption of the twentieth century: centennial perspectives. US Geological Survey Professional Paper 1791, p 259

  • Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geological Time Scale 2012. Elsevier, Amsterdam, pp 923–978

    Google Scholar 

  • Hohenegger J, Ćorić S, Wagreich M (2014) Timing of the Middle Miocene Badenian stage of the Central Paratethys. Geol Carpath 65:55–66

    Google Scholar 

  • Holcová K, Dolákova N, Nehyba S, Vacek F (2018) Timing of Langhian bioevents in the Carpathian Foredeep and northern Pannonian Basin in relation to oceanographic, tectonic and climatic processes. Geol Q 62:3–17

    Google Scholar 

  • Hopkins JL, Seward D (2019) Towards robust tephra correlations in early and pre-Quaternary sediments: a case study from North Island, New Zealand. Q Geochronol 50:91–108

    Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, pp 191–20632

    Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian Basin and its geothermal resources. Geothermics 53:328–352

    Google Scholar 

  • Hudspith VA, Scott AC, Wilson CJN, Collinson ME (2010) Charring of woods by volcanic processes: an example from the Taupo ignimbrite, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 292:35–43

    Google Scholar 

  • Ji W-Q, Malusà MG, Tiepolo M, Langone A, Zhao L, Wu F-Y (2019) Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova 31:120–128

    Google Scholar 

  • Kästle ED, Rosenberg C, Boschi L, Bellahansen N, Meier T, El-Sharkawy A (2020) Slab break-offs in the Alpine subduction zone. Int J Earth Sci 109:587–603

    Google Scholar 

  • Kataoka KS, Manville V, Nakajo T, Urabe A (2009) Impacts of explosive volcanism on distal alluvial sedimentation: examples from the Pliocene–Holocene volcaniclastic successions of Japan. Sediment Geol 220:306–317

    Google Scholar 

  • Koppers AAP (2002) ArArCALC F software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Google Scholar 

  • Koroneos A, Poli G, Cvetković V, Christofides G, Krstić D, Pécskay Z (2010) Petrogenetic and tectonic inferences from the study of the Mt Cer pluton (West Serbia). Geol Mag 148:89–111

    Google Scholar 

  • Kováč M, Halásova E, Hudáčkova N, Holcová K, Hyžný M, Jamrich M, Ruman A (2018) Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geol Carpath 69:283–300

    Google Scholar 

  • Kovačić M, Pavelić D (2017) Neogene stratigraphy of Slavonian Mountains. In: Kovačić M, Wacha L, Horvat M (eds) Field trip guidebook: Neogene of Central and South-Eastern Europe. Croatian Geological Society, Zagreb, pp 5–9

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Google Scholar 

  • Kuiper K, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504

    Google Scholar 

  • Kutterolf S, Freundt A, Burkert C (2011) Eruptive history and magmatic evolution of the 1.9 kyr Plinian dacitic Chiltepe Tephra from Apoyegue volcano in west-central Nicaragua. Bull Volcanol 73:811–831

    Google Scholar 

  • Kutterolf S, Schindlbeck JC, Scudder RP, Murray RW, Pickering KT, Freundt A, Labanieh S, Heydolph K, Saito S, Naruse H, Underwood MB, Wu H (2014) Large volume submarine ignimbrites in the Shikoku Basin: an example for explosive volcanism in the Western Pacific during the Late Miocene. Geochem Geophys Geosyst 15:1837–1851

    Google Scholar 

  • Kutterolf S, Schindlbeck JC, Robertson AHF, Avery A, Baxter AT, Petronotis K, Wang K-L (2018) Tephrostratigraphy and provenanace from IODP expedition 352, Izu-Bonin Arc: tracing tephra sources and volumes from the Oligocene to recent. Geochem Geophys Geosyst 19:150–174

    Google Scholar 

  • Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512

    Google Scholar 

  • Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204

    Google Scholar 

  • Lowe DJ (2011) Tephrochronology and its application: a review. Q Geochronol 6:107–153

    Google Scholar 

  • Lowe DJ, Pearce NJG, Jorgensen MA, Kuehn SC, Tryon CA, Hayward CL (2017) Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Q Sci Rev 175:1–44

    Google Scholar 

  • Lukács R, Harangi S, Bachmann O, Guillong M, Danišík M, Buret Y, von Quadt A, Dunkl I, Fodor L, Sliwinski J, Soós I, Szepesi J (2015) Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contrib Mineral Petrol 170:52

    Google Scholar 

  • Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I, Zimmerer M (2018) Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications. Earth Sci Rev 179:1–19

    Google Scholar 

  • Mandic O, de Leeuw A, Vuković B, Krijgsman W, Harzhauser M, Kuiper KF (2011) Palaeoenvironmental evolution of Lake Gacko (Bosnia and Herzegovina): impact of the middle Miocene climatic optimum on on the Dinaride Lake System. Palaoegeogr Palaeoclimatol Palaeoecol 299:475–492

    Google Scholar 

  • Mandic O, de Leeuw A, Bulić J, Kuiper KF, Krijgsman W, Jurišić-Polšak Z (2012) Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. Int J Earth Sci 101:1033–1046

    Google Scholar 

  • Mandic O, Hajek-Tadesse V, Bakrač K, Reichenbacher B, Grizelj A, Miknić M (2019a) Multiproxy reconstruction of the middle Miocene Požega paleolake in the Southern Pannonian Basin (NE Croatia) prior to the Badenian transgression of the Central Paratethys Sea. Palaoegeogr Palaeoclimatol Palaeoecol 516:203–219

    Google Scholar 

  • Mandic O, Sant K, Kallanxhi M-E, Ćorić S, Theobalt D, Grunert P, de Leeuw A, Krijgsman W (2019b) Integrated bio-magnetostratigraphy of the Badenian reference section Ugljevik in southern Pannonian Basin—implications for the Paratethys history (middle Miocene, Central Europe). Glob Planet Change 172:374–395

    Google Scholar 

  • Mandic O, Lj R, Ćorić S, Pezelj Đ, Theobalt D, Sant K, Krijgsman W (2019c) Age and mode of the Middle Miocene marine flooding of the Pannonian Basin—constraints from central Serbia. Palaios 34:71–95

    Google Scholar 

  • Marković F (2017) Miocene tuffs of the North Croatian Basin. Dissertation, University of Zagreb

  • Matenco L, Radivojević D (2012) On the formation and evolution of the Pannonian Basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics 31:TC6007

    Google Scholar 

  • Mattinson JM (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McLean NM, Bowring JF, Bowring SA (2011) An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem Geophys Geosyst 12:QOAA18

    Google Scholar 

  • McLean NM, Condon DJ, Schoene B, Bowring SA (2015) Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim Cosmochim Acta 164:481–501

    Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. CODES Key Centre, Hobart

    Google Scholar 

  • Miller W III (2006) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64:73–98

    Google Scholar 

  • Mundil R, Ludwig KR, Metcalf I, Renne PR (2004) Age and timing of the Permian max extinctions: U/Pb dating and closed-system zircons. Science 305:669–673

    Google Scholar 

  • Neubauer F, Heberer B, Dunkl I, Liu X, Bernroider M, Dong Y (2018) The Oligocene Reifnitz tonalite (Austria) and its host rocks: implications for Cretaceous and Oligocene–Neogene tectonics of the south-eastern Eastern Alps. Geol Carpath 69:237–253

    Google Scholar 

  • Ovtcharova M, Goudemand N, Hammer O, Gudoun K, Cordey F, Galfetti T, Schaltegger U, Bucher H (2015) Developing a strategy for accurate definition of a geological boundary through radio-isotope and biochronological dating: the Early–Middle Triassic boundary (South China). Earth Sci Rev 146:65–76

    Google Scholar 

  • Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sediment Geol 235:133–140

    Google Scholar 

  • Pamić J, Balen D (2001a) Tertiary magmatism of the Dinarides and the adjoining South Pannonian Basin: an overview. Acta Vulcanol 13:9–24

    Google Scholar 

  • Pamić J, Balen D (2001b) Petrology and geochemistry of Egerian–Eggenburgian and Badenian tholeiite-calc-alkaline volcanics from the South Pannonian Basin (Croatia). N Jb Minerol Abh 176:237–267

    Google Scholar 

  • Pamić J, McKee EH, Bullen TD, Lanphere MA (1995) Tertiary volcanic rocks from the Southern Pannonian Basin, Croatia. Int Geol Rev 37:259–283

    Google Scholar 

  • Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 13:359–376

    Google Scholar 

  • Pavelić D, Kovačić M (2018) Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): a review. Mar Pet Geol 91:455–469

    Google Scholar 

  • Pavelić D, Avanić R, Bakrač K, Vrsaljko D (2001) Early Miocene braided river and lacustrine sedimentation in the Kalnik mountain area (Pannonian Basin System, NW Croatia). Geol Carpath 52:375–386

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonuarea, northern Turkey. Contrib Minerol Petrol 58:63–71

    Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530

    Google Scholar 

  • Phillips D, Matchan EL (2013) Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: new dating standards required? Geochim Cosmochim Acta 121:229–239

    Google Scholar 

  • Poli G, Christofides G, Koroneos A, Trajanova M, Zupančić N (2020) Multiple processes in the genesis of the Pohorje igneous complex: evidence from petrology and geochemistry. Lithos. https://doi.org/10.1016/j.lithos.2020.105512

    Article  Google Scholar 

  • Reiners PW, Carlson RW, Renne PR, Cooper KM, Granger DE, McLean NM, Schoene B (2018) Geochronology and thermochronology. Wiley, Hoboken

    Google Scholar 

  • Rivera T, Storey M, Schmitz M, Crowley JL (2013) Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Elder Creek Rhyolite Quaternary geochronology standard. Chem Geol 345:87–98

    Google Scholar 

  • Rocholl A, Schaltegger U, Gilg HA, Wijbrans J, Böhme M (2018) The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. Int J Earth Sci (Geol Rundsch) 107:387–407

    Google Scholar 

  • Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99:279–310

    Google Scholar 

  • Rosenberg CL (2004) Shear zones and magma ascent: a model based on a review of the tertiary magmatism in the Alps. Tectonics 23:TC3002

    Google Scholar 

  • Rybár S, Šarinová K, Sant K, Kuiper KF, Kováčová M, Vojtko R, Resiser MK, Fordinál K, Theodoridis V, Nováková P, Vlček T (2019) New 40Ar/39Ar, fission track and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin: implications for the north-western Central Paratethys region. Geol Carpath 70:386–404

    Google Scholar 

  • Sahy D, Condon DJ, Hilgen FJ, Kuiper KF (2017) Reducing disparity in radio-isotopic and astrochronology-based time scales of the Late Eocene and Oligocene. Paleoeceanography 32:1018–1035

    Google Scholar 

  • Samperton KM, Schoene B, Cottle JM, Keller CB, Crowley JL, Schmitz MD (2015) Magma emplacement, differentiation and cooling in the middle crust: integrated zircon geochronological-geochemical constraints from the Bergell intrusion, Central Alps. Chem Geol 417:322–340

    Google Scholar 

  • Sant K, Palcu D, Mandic O, Krijgsman W (2017) Changing seas in the Early-Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. Terra Nova 29:273–281

    Google Scholar 

  • Sant K, Palcu DV, Turco E, Di Stefano A, Baldassini N, Kouwenhoven T, Kuiper KF, Krijgsman W (2019) The mid-Langhian flooding in the eastern Central Paratethys: integrated stratigraphic data from the Transylvanian Basin and SE Carpathian Foredeep. J Earth Sci 108:2209–2232

    Google Scholar 

  • Sant K, Kuiper KF, Rybár S, Grunert P, Harzhauser M, Mandic O, Jamrich M, Šarinová K, Hudáčková N, Krijgsman W (2020) 40Ar/39Ar geochronology using high sensitivity mass spectrometry: examples from middle Miocene horizons of the Central Paratethys. Geol Carpath 71:166–182

    Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286:208–218

    Google Scholar 

  • Schaltegger U, Schmitt AK, Horstwood MSA (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem Geol 402:89–110

    Google Scholar 

  • Schefer S, Cvetković V, Fügenschuh B, Kounov A, Ovtcharova M, Schaltegger U, Schmid SM (2011) Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula. Int J Earth Sci (Geol Rundsch) 100:1181–1206

    Google Scholar 

  • Schindlbeck JC, Kutterolf S, Freundt A, Scudder RP, Pickering KT, Murray RW (2013) Emplacement processes of submarine volcaniclastic deposits (IODP Site C0011, Nankai Trough). Mar Geol 343:115–124

    Google Scholar 

  • Schindlbeck JC, Kutterolf S, Freundt A, Alvarado GE, Wang K-L, Straub SM, Hemming SR, Frische M, Woodhead JD (2016) Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 1. Tephra ages and provenance. Geochem Geophys Geosyst 17:4641–4668

    Google Scholar 

  • Schindlbeck JC, Kutterolf S, Freundt A, Eisele S, Wang K-L, Frische M (2018) Miocene to Holocene marine tephrostratigraphy offshore northern Central America and southern Mexico: pulsed activity of known volcanic complexes. Geochem Geophys Geosyst 19:4143–4173

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Google Scholar 

  • Schmitz MD (2012) Radiogenic isotope geochronology. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geological Time Scale 2012. Elsevier, Amsterdam, pp 115–126

    Google Scholar 

  • Schmitz MD (2018) Geologic Time Scale. In: White WM (ed) Encyclopedia of geochemistry. Springer, Berlin, pp 586–589

    Google Scholar 

  • Schmitz MD, Kuiper KF (2013) High-precision geochronology. Elements 9:25–30

    Google Scholar 

  • Schneider J-L, Le Ruyet A, Chanier F, Buret C, Ferrière J, Proust J-N, Rosseel J-B (2001) Primary or secondary distal volcaniclastic turbidites? An example from the Miocene of New Zealand (Mahia Peninsula, North Island). Sediment Geol 145:1–22

    Google Scholar 

  • Seghedi I, Downes H (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Res 20:655–672

    Google Scholar 

  • Shanmugam G (2017) Global case studies of soft-sediment deformation structures (SSDS): definitions, classifications, advances, origins, and problems. J Palaeogeogr 6:251–320

    Google Scholar 

  • Söderlund U, Johansson L (2002) A simple way to extract baddeleyite (ZrO2). Geochem Geophys Geosyst 3:1–7

    Google Scholar 

  • Stoppa L, Kutterolf S, Rausch J, Grobety B, Pettke T, Wang K-L, Hemming S (2018) The Malpaisillo Formation: a sequence of explosive eruptions in the mid to late Pleistocene (Nicaragua, Central America). J Volcanol Geotherm Res 359:47–67

    Google Scholar 

  • Strasky S, Schaltegger U, Ovtcharova M, Hofmann B, Kälin D (2018) Age determination and correlation of the Wolhusen Bentonite (Upper Freshwater Molasse, Middle Miocene, Napf alluvial fan, Switzerland). In: Dèzes P (ed) Abstract Volume: 16th Swiss Geoscience Meeting. Universität Bern, p 204

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sauders SJ, Norry MJ (eds) Magmatism in the ocean basins. Geological Society London Special Publications, London, pp 313–345

    Google Scholar 

  • Szakács A, Pécskay Z, Gál Á (2018) Patterns and trends of time-space evolution of Neogene volcanism in the Carpathian–Pannonian region: a review. Acta Geod Geophys 53:347–367

    Google Scholar 

  • Szymanowski D, Ellis BS, Wotzlaw JF, Buret Y, von Quadt A, Peytcheva I, Bindeman IN, Bachmann O (2016) Geochronological and isotopic records of crustal storage and assimilation in the Wolverine Creek-Conant Creek system, Heise eruptive centre, Snake River Plain. Contrib Mineral Petrol 171:106

    Google Scholar 

  • Szymanowski D, Ellis BS, Wotzlaw J-F, Bachmann O (2019) Maturation and rejuvenation of a silicic magma reservoir: high-resolution chronology of the Kneeling Nun Tuff. Earth Planet Sci Lett 510:103–115

    Google Scholar 

  • Šegvić B, Mileusnić M, Aljinović D, Vranjković A, Mandic O, Pavelić D, Dragičević I, Mählmann RF (2014) Magmatic provenance and diagenesis of Miocene tuffs from the Dinaride Lake System (the Sinj Basin, Croatia). Eur J Mineral 26:83–101

    Google Scholar 

  • Šimunić A, Hećimović I, Avanić R (2013) Basic geological map 1:100,000. Sheet Koprivnica. Croatian Geological Survey, Zagreb

    Google Scholar 

  • Šimunić A, Hećimović I, Avanić R (2014) Basic geological map 1:100,000. Sheet Koprivnica, explanatory notes. Zagreb, Croatian Geological Survey, p 94

    Google Scholar 

  • Tibljaš D, Loparić V, Belak M (2002) Discriminant function analysis of Miocene volcaniclastic rocks from north-western Croatia based on geochemical data. Geol Croat 55:39–44

    Google Scholar 

  • Trofimovs J, Sparks RSJ, Talling PJ (2008) Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufrière Hills volcano, Montserrat, West Indies. Sedimentology 55:617–634

    Google Scholar 

  • van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55

    Google Scholar 

  • Vervoort J (2018) Geochronology and radiogenic isotopes. In: White WM (ed) Encyclopedia of geochemistry. Springer, Berlin, pp 571–586

    Google Scholar 

  • von Quadt A, Erni M, Marinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734

    Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Google Scholar 

  • Widmann P, Davies JHFL, Schaltegger U (2019) Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U–Pb age. Chem Geol 511:1–10

    Google Scholar 

  • Wilson CJN, Houghton BF, Kamp PJJ, McWilliams MO (1995) An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement. Nature 378:605–607

    Google Scholar 

  • Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870

    Google Scholar 

  • Wotzlaw J-F, Hüsing SK, Hilgen FJ, Schaltegger U (2014) High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet Sci Lett 407:19–34

    Google Scholar 

  • Wotzlaw J-F, Brack P, Storck J-C (2018) High-resolution stratigraphy and U–Pb geochronology of the Middle Triassic Buchenstein Formation (Dolomites, northern Italy): precession-forcing of hemipelagic carbonate sedimentation and calibration of the Anisian–Ladinian boundary interval. J Geol Soc 175:71–85

    Google Scholar 

Download references

Acknowledgements

The work has been supported in part by Croatian Science Foundation under the project “Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): a multi-proxy approach, correlation and integration of sedimentary and volcanic record” (PYROSKA, HRZZ UIP-2019-04-7761). Katarína Holcová also acknowledges the support of the project PROGRES Q45 financed by Charles University (Prague). We would like to thank Dr. Andrea Di Capua for his very helpful comments and suggestions that improved the manuscript, as well as Professor Christoph Breitkreuz for editorial work. Additionally, thanks to Croatian Geological Survey Lab team, and Mirjana Miknić for field support.

Funding

The work has been supported in part by Croatian Science Foundation under the project “Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): a multi-proxy approach, correlation and integration of sedimentary and volcanic record” (PYROSKA, HRZZ UIP-2019-04-7761).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MB, SK, SG, KK, MB, VB, KH, KW, KB, VH, IM, MH, SS, and US. The first draft of the manuscript was written by MB and all authors commented on versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mihovil Brlek.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brlek, M., Kutterolf, S., Gaynor, S. et al. Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): new constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications. Int J Earth Sci (Geol Rundsch) 109, 2775–2800 (2020). https://doi.org/10.1007/s00531-020-01927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01927-4

Keywords

Navigation