Abstract
Although there is a consensus about Pangea assemblage in northwestern Gondwana spanning from the Late Carboniferous to the Early Permian, the tectonics of the Permo–Triassic period, including the onset of Pangea breakup, is still controversial. In this context, three regional tectonic features need to be considered: (1) The Ouachita-Marathon-Sonora suture, (2) east-dipping subduction of the Panthalassa oceanic crust beneath Gondwana, and (3) an extensional setting documented in Colombia, Ecuador, and México suggesting Pangea breakup at ca. 240–220 Ma. A chemical, isotopic, and geochronological dataset is presented in this contribution to constrain the effects of these tectonic processes in the metamorphic basement of the Mérida Andes in western Venezuela. U–Pb Secondary Ion Mass Spectrometry analyses on unpolished surfaces of zircons from orthogneisses yielded an average age of 251 ± 4 Ma. The corresponding δ18O values suggest metamorphic recrystallization of zircon instead of high-T fluid interaction. Rb–Sr and Sm–Nd geochronology in white mica and garnet yielded ages of 234 ± 3 Ma and 249 ± 2 Ma, respectively, whereas a younger Rb–Sr date of 197 ± 1 Ma was obtained from biotite. U–Pb and Sm–Nd ages constrain the latest Permian–earliest Triassic metamorphism in the Mérida Andes at 251 ± 4 Ma. Geothermobarometry data suggest amphibolite-facies peak metamorphic conditions at ~ 685 °C and ~ 6.0 kbar. Metamorphism might be related to post-orogenic collapse, after the collision of Gondwana and Laurentia to form Pangea. Rb–Sr ages suggest retrogression and cooling, possibly caused by thermal relaxation of a tectonically overthickened crust and onset of extensional setting, followed by Pangea breakup during the Late Triassic–Early Jurassic.
Similar content being viewed by others
References
Anenburg M, Katzir Y (2014) Muscovite dehydration melting in Si-rich metapelites: Microstructural evidence from trondhjemitic migmatites, Roded, Southern Israel. Mineral Petrol 108:137–152. https://doi.org/10.1007/s00710-013-0289-z
Arvizu H, Iriondo A (2015) Control temporal y geología del magmatismo Permo-Triásico en Sierra Los Tanques, NW Sonora, México: Evidencia del inicio del arco magmático cordillerano en el SW de Laurencia. Bol SocGeol Mex 67:545–586. https://doi.org/10.18268/bsgm2015v67n3a16
Audemard FE, Audemard FA (2002) Structure of the Mérida Andes, Venezuela: relations with the South America–Caribbean geodynamic interaction. Tectonophysics 345:299–327
Audemard MFA, Castilla R (2016) Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: a successful trial. J S Am Earth Sci 71:309–319. https://doi.org/10.1016/j.jsames.2016.06.005
Baxter EF, Scherer EE (2013) Garnet geochronology: timekeeper of tectonometamorphic processes. Elements 9:433–438. https://doi.org/10.2113/gselements.9.6.433
Baxter EF, Ague JJ, Depaolo DJ (2002) Prograde temperature-time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. J Geol Soc Lond 159:71–82. https://doi.org/10.1144/0016-76901013
Berman RG (1991) Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications. Can Mineral 29:833–855
Bermúdez MA, van der Beek P, Bernet M (2011) Asynchronous Miocene–Pliocene exhumation of the central Venezuelan Andes. Geology 39:139–142. https://doi.org/10.1130/G31582.1
Bhattacharya A, Mohanty L, Maji A et al (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 111:87–93. https://doi.org/10.1007/BF00296580
Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. https://doi.org/10.1016/j.epsl.2008.06.010
Burkley L (1976) Geochronology of the Central Venezuelan Andes. Dissertation, Case Western Reserve University
Cardona A, Valencia V, Garzón A et al (2010) Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. J S Am Earth Sci 29:772–783. https://doi.org/10.1016/j.jsames.2009.12.005
Cardona A, Valencia VA, Lotero A et al (2016) Provenance of middle to late Palaeozoic sediments in the northeastern Colombian Andes: implications for Pangea reconstruction. Int Geol Rev 58:1914–1939. https://doi.org/10.1080/00206814.2016.1190948
Casini L, Oggiano G (2008) Late orogenic collapse and thermal doming in the northern Gondwana margin incorporated in the Variscan Chain: a case study from the Ozieri Metamorphic Complex, northern Sardinia, Italy. Gondwana Res 13:396–406. https://doi.org/10.1016/j.gr.2007.11.004
Chen Z, Liu Y, Hodges KV et al (1990) The Kangmar dome: a metamorphic core complex in southern Xizang (Tibet). Science (80-) 250:1552–1556. https://doi.org/10.1126/science.250.4987.1552
Cherniak JD (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72:827–869. https://doi.org/10.2138/rmg.2010.72.18
Cochrane R, Spikings R, Gerdes A et al (2014) Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos 190–191:383–402. https://doi.org/10.1016/j.lithos.2013.12.020
Colletta B, Roure F, De Toni B et al (1997) Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuela Andes. Tectonics 16:777–794. https://doi.org/10.1029/97TC01659
Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am J Sci 290:666–718. https://doi.org/10.2475/ajs.290.6.666
Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002540
Coombs HE, Kerr AC, Pindell J et al (2020) Petrogenesis of the crystalline basement along the Western Gulf of Mexico: Post- collisional magmatism during the formation of Pangaea. In: Martens U, Molina-Garza RS (eds) Southern and Central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic-Cenozoic Basins. GSA special papers. https://doi.org/10.1130/SPE546
Costa S, Rey P (1995) Lower crustal rejuvenation and growth during post-thickening collapse: insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23:905–908. https://doi.org/10.1130/0091-7613(1995)023%3c0905:LCRAGD%3e2.3.CO;2
Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140:353–362. https://doi.org/10.1007/s004100000187
Dale J, Powell R, White RW et al (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J Metamorph Geol 23:771–791. https://doi.org/10.1111/j.1525-1314.2005.00609.x
Dempster TJ (1992) Zoning and recrystallization of phengitic micas: implications for metamorphic equilibration. Contrib Mineral Petrol 109:526–537. https://doi.org/10.1007/BF00306554
Elías-Herrera M, Ortega-Gutiérrez F (2002) Caltepec fault zone: an early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. Tectonics 21:4-1–4-18. https://doi.org/10.1029/2000tc001278
Evans TP (2004) A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: implications for isopleth thermobarometry. J Metamorph Geol 22:547–557. https://doi.org/10.1111/j.1525-1314.2004.00532.x
Fayon AK, Whitney DL, Teyssier C (2004) Exhumation of orogenic crust: diapiric ascent versus low-angle normal faulting. Spec Pap Geol Soc Am 380:129–139. https://doi.org/10.1130/0-8137-2380-9.129
Fu B, Mernagh TP, Kita NT et al (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem Geol 259:131–142. https://doi.org/10.1016/j.chemgeo.2008.10.035
Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215
García R (1972) El Permo-Carbonífero en Venezuela. Boletín de la Sociedad Venezolana de Geólogos 7:203–214
García-Jarpa R, Campos C (1972) Las rocas paleozoicas en la región del Río Momboy. In: Memorias del IV Congreso Geológico Venezolano, 1969. Boletín de Geología no. 5, Caracas, pp 796–806
Gerya TV, Perchuk LL, Triboulet C et al (1997) Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology 5–6:503–533
Gómez JC (2014) Braquiopodos del Ordovícico Medio y Silúrico del flanco surandino. Venezuela. Geominas 42:13–18
González de Juana C, de Arozena JMI, Cadillat XP (1980) Geología de Venezuela y de sus Cuencas Petrolíferas. Ediciones Foninves, Caracas
Grauch RI (1975) Geología de la Sierra Nevada al sur de Mucuchíes, Andes venezolanos: Una región metamórfica de aluminosilicatos. Boletín de Geología del Ministerio de Minas e Hidrocarburos XII:339–441
Green ECR, White RW, Diener JFA et al (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34:845–869. https://doi.org/10.1111/jmg.12211
Gutiérrez-Marco JC, Goldman D, Reyes-Abril J, Gómez J (2011) A preliminary study of some Sandbian (Upper Ordovician) graptolites. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Instituto Geológico y Minero de España, Madrid, pp 199–206
Hackley P, Urbani F, Karlsen AW, Garrity CP (2005) Geological shaded relief map of Venezuela. USGS Open-file Report (2005-1038)
Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of moutain chains. Elements 3:25–30. https://doi.org/10.2113/gselements.3.1.25
Hatcher RD (2010) The Appalachian orogen: a brief summary. In: Tollo RP, Bartholomew MJ, Hibbard JP, Karabinos PM (eds) From Rodinia to Pangea: the lithotectonic record of the Appalachian region. Geological Society of America Memoir, vol 206, Boulder, Colorado, pp 1–19. https://doi.org/10.1130/2010.1206(01)
Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162. https://doi.org/10.1016/j.chemgeo.2005.09.018
Hawthorne FC, Oberti R, Harlow GE et al (2012) Ima report: nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048. https://doi.org/10.2138/am.2012.4276
Hodges KV (2014) Thermochronology in Orogenic Systems. In: Treatise on geochesmitry, 2nd edn, vol 4. Elsevier Ltd., pp 281–308. https://doi.org/10.1016/B978-0-08-095975-7.00308-9
Hodges KV, Walker JD (1990) Petrologic constraints on the unroofing history of the Funeral Mountain metamorphic core complex, California. J Geophys Res 95:8437–8445. https://doi.org/10.1029/JB095iB06p08437
Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892. https://doi.org/10.2138/am-2000-0701
Holdaway MJ (2001) Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am Mineral 86:1117–1129. https://doi.org/10.2138/am-2001-1001
Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. https://doi.org/10.1007/BF00310910
Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
Horie K, Tsutsumi Y, Takehara M, Hidaka H (2018) Timing and duration of regional metamorphism in the Kagasawa and Unazuki areas, Hida metamorphic complex, southwest Japan. Chem Geol 484:148–167. https://doi.org/10.1016/j.chemgeo.2017.12.016
Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. https://doi.org/10.2113/0530027
Hunter J (2009) Improving depth profile measurements of natural materials: Lessons learned from electronic materials depth-profiling. In: Fayek M (ed) Secondary Ion Mass Spectrometry in the Earth Sciences: Gleaning the Big Picture from a Small Spot. Mineral Assoc Can Short Course 41, pp 133–148
Ikeda T (1993) Compositional zoning patterns of garnet during prograde metamorphism from the Yanai district, Ryoke metamorphic belt, southwest Japan. Lithos 30:109–121. https://doi.org/10.1016/0024-4937(93)90010-A
Jenkin GRT (1997) Do cooling paths derived from mica Rb–Sr data reflect true cooling paths ? Geology 25:907–910
Jenkin GRT, Ellam RM, Rogers G, Stuart FM (2001) An investigation of closure temperature of the biotite Rb–Sr system: the importance of cation exchange. Geochim Cosmochim Acta 65:1141–1160. https://doi.org/10.1016/S0016-7037(00)00560-3
Kerrich R, King R (1993) Hydrothermal zircon and baddeleyite in Val-d’Or Archean mesothermal gold deposits: characteristics, compositions, and fluid-inclusion properties, with implications fortiming of primary gold mineralization. Can J Earth Sci 30:2334–2351. https://doi.org/10.1139/e93-203
Kohn MJ (2014) Geochemical zoning in metamorphic minerals. In: Treatise on geochemistry, 2nd edn, vol 4. Elsevier Inc., pp 249–280. https://doi.org/10.1016/B978-0-08-095975-7.00307-7
Kohn MJ, Spear FS (1990) Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am Mineral 75:89–96
Kovisars L (1971) Geology of a portion of the north-central Venezuelan Andes. Geol Soc Am Bull 82:3111–3138. https://doi.org/10.1130/0016-7606(1971)82%5b3111:GOAPOT%5d2.0.CO;2
Lawrie KC, Mernagh TP, Ryan CG et al (2007) Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, New South Wales, Australia. Proc Geol Assoc 118:37–46. https://doi.org/10.1016/S0016-7878(07)80045-9
Laya JC, Tucker ME (2012) Facies analysis and depositional environments of Permian carbonates of the Venezuelan Andes: palaeogeographic implications for Northern Gondwana. Palaeogeogr Palaeoclimatol Palaeoecol 331–332:1–26. https://doi.org/10.1016/j.palaeo.2012.02.011
Liu F-L, Liu P-H, Cai J (2016) Genetic mechanism and metamorphic evolution of Khondalite series within the Paleoproterozoic mobile belts, North China craton. In: Zhai M, Zhao Y, Zhao T (eds) Main tectonic events and metallogeny of the North China craton. Springer, Berlin, pp 181–228
Locock AJ (2014) An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11. https://doi.org/10.1016/j.cageo.2013.09.011
Loizenbauer J, Wallbrecher E, Fritz H et al (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res 110:357–383. https://doi.org/10.1016/S0301-9268(01)00176-0
Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357. https://doi.org/10.1016/0012-821X(78)90021-3
Maldonado R, Ortega-Gutiérrez F, Ortíz-Joya GA (2018) Subduction of Proterozoic to Late Triassic continental basement in the Guatemala suture zone: a petrological and geochronological study of high-pressure metagranitoids from the Chuacús complex. Lithos 308–309:83–103. https://doi.org/10.1016/j.lithos.2018.02.030
Mann P, Escalona A, Castillo MV (2006) Regional geologic and tectonic setting of the Maracaibo supergiant basin, western Venezuela. Am Assoc Pet Geol Bull 90:445–477. https://doi.org/10.1306/10110505031
Maréchal P (1983) Les témoins de la chaîne hercynienne dans le noyau ancien des Andes de Mérida (Vénézuela) (Structure et évolution tectonométamorphique). Dissertation, Université de Bretagne-Occidentale
Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224. https://doi.org/10.1007/BF00375235
Massonne HJ, Toulkeridis T (2012) Widespread relics of high-pressure metamorphism confirm major terrane accretion in Ecuador: a new example from the Northern Andes. Int Geol Rev 54:67–80. https://doi.org/10.1080/00206814.2010.498907
Massonne HJ, Willner AP, Gerya T (2007) Densities of metapelitic rocks at high to ultrahigh pressure conditions: what are the geodynamic consequences? Earth Planet Sci Lett 256:12–27. https://doi.org/10.1016/j.epsl.2007.01.013
Mazuera F, Schmitz M, Escalona A et al (2019) Lithospheric structure of northwestern Venezuela from wide-angle seismic data: implications for the understanding of continental margins evolution. J Geophys Res Solid Earth 5:8. https://doi.org/10.1029/2019JB017892
McGrew AJ, Peters MT, Wright JE (2000) Thermobarometric constraints on the tectonothermal evolution of the East Humboldt range metamorphic core complex, Nevada. Bull Geol Soc Am 112:45–60. https://doi.org/10.1130/0016-7606(2000)112%3c45:TCOTTE%3e2.0.CO;2
Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, New York
Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Spec Publ 220:65–81. https://doi.org/10.1144/GSL.SP.2003.220.01.04
Monod B, Dhont D, Hervouët Y (2010) Orogenic float of the Venezuelan Andes. Tectonophysics 490:123–135. https://doi.org/10.1016/j.tecto.2010.04.036
Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2012) A brief history of the Rheic ocean. Geosci Front 3:125–135. https://doi.org/10.1016/j.gsf.2011.11.008
Nebel O, Mezger K, Scherer EE, Münker C (2005) High precision determinations of 87Rb/85Rb in geologic materials by MC-ICP-MS. Int J Mass Spectrom 246:10–18. https://doi.org/10.1016/j.ijms.2005.08.003
Nebel O, Scherer EE, Mezger K (2011) Evaluation of the 87Rb decay constant by age comparison against the U–Pb system. Earth Planet Sci Lett 301:1–8. https://doi.org/10.1016/j.epsl.2010.11.004
Newton RC, Haselton HT (1981) Thermodynamics of the Garnet—Plagioclase—Al2SiO5—Quartz Geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Advances in physical geochemistry, vol 1. Springer, New York, pp 131–147. https://doi.org/10.1007/978-1-4612-5871-1_7
Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941. https://doi.org/10.1016/0016-7037(80)90283-5
Ostos M, Yoris F, Lallemant HGA (2005) Overview of the southeast Caribbean–South American plate boundary zone. In: Lallemant HGA, Sisson VB (eds) GSA Special Paper 394: Caribbean–South American plate interactions, Venezuela, pp 53–89. https://doi.org/10.1130/SPE394
Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. JGR Solid Earth 98:13997–14013. https://doi.org/10.1029/93JB01159
Payne JL, Hand M, Pearson NJ et al (2015) Crustal thickening and clay: controls on O isotope variation in global magmatism and siliclastic sedimentary rocks. Earth Planet Sci Lett 412:70–76. https://doi.org/10.1016/j.epsl.2014.12.037
Perchuk LL (1991) Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks. In: Perchuk LL (ed) Progress in metamorphic and magmatic petrology: a memorial volume in honour of D. S. Korzhinskiy. Cambridge University Press, Cambridge, pp 93–112
Peterman EM, Grove M (2010) Growth conditions of symplectic muscovite + quartz: implications for quantifying retrograde metamorphism in exhumed magmatic arcs. Geology 38:1071–1074. https://doi.org/10.1130/G31449.1
Piraquive A (2017) Structural framework, deformation and exhumation of the Santa Marta Schists: Accretion and deformational history of a Caribbean Terrane at the north of the Sierra Nevada de Santa Marta. Dissertation, Univesité Grenoble Alpes
Pollington AD, Baxter EF (2010) High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2010.02.019
Poole FG, Perry WJ, Madrid RJ, Amaya-Martínez R (2005) Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate-tectonic model. In: Anderson TH, Nourse JA, Mckee JW, Steiner MB (eds) GSA Special Paper 393: Mojave-Sonora megashear hypothesis: development, assessment, and alternatives, pp 543–596. https://doi.org/10.1130/0-8137-2393-0.543
Powell R, Holland T (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133. https://doi.org/10.1007/1-4020-4496-8_148
Ramos VA (2018) The Famatinian orogen along the protomargin of Western Gondwana: evidence for a nearly continuous Ordovician magmatic arc between Venezuela and Argentina. In: Folguera A, Contreras-Reyes E, Heredia N et al (eds) The Evolution of the Chilean-Argentinean Andes. Springer Earth System Sciences, Berlin, pp 154–183
Ratschbacher L, Franz L, Min M et al (2009) The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras. Geol Soc Lond Spec Publ 328:219–293. https://doi.org/10.1144/SP328.11
Reinoza CE, Audemard MFA, Jouanne F et al (2020) Strain calculations of active tectonic blocks in northeastern Venezuela from GNSS analysis. J South Am Earth Sci 102:102661. https://doi.org/10.1016/j.jsames.2020.102661
Rieder M, Cavazzini G, D’Yakonov Y et al (1998) Nomenclature of micas. Can Mineral 36:41–48. https://doi.org/10.1515/9781501509070-005
Roberts NMW, Spencer CJ (2015) The zircon archive of continent formation through time. Geol Soc Lond Spec Publ 389:197–225. https://doi.org/10.1144/SP389.14
Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle east Paleozoic plate tectonics. GeoArabia 12:35–56
Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138. https://doi.org/10.1016/S0009-2541(01)00355-2
Rubatto D (2017) Zircon: the metamorphic mineral. Rev Mineral Geochem 83:261–295. https://doi.org/10.2138/rmg.2017.83.9
Rubin JN, Henry CD, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Am Mineral 74:865–869
Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem Geol 110:29–47. https://doi.org/10.1016/0009-2541(93)90246-F
Schaaf P, Weber B, Weis P et al (2002) The Chiapas Massif (Mexico) revised: new geologic and isotopic data and basement characteristics. Neues Jahrb Geol Palaontol Abh 225:1–23. https://doi.org/10.1127/njgpa/225/2002/1
Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim Cosmochim Acta 64:3413–3432. https://doi.org/10.1016/S0016-7037(00)00440-3
Schmitt AK, Vazquez JA (2017) Secondary ionization mass spectrometry analysis in petrochronology. Rev Mineral Geochem 83:199–230. https://doi.org/10.2138/rmg.2017.83.7
Schmitt AK, Grove M, Harrison TM et al (2003) The Geysers–Cobb Mountain Magma System, California (part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67:3423–3442. https://doi.org/10.1016/S0016-7037(03)00140-6
Schmitt AK, Klitzke M, Gerdes A, Schäfer C (2017) Zircon hafnium-Oxygen isotope and trace element petrochronology of intraplate volcanic rocks from the Eifel (Germany) and implications for mantle versus crustal origins of zircon megacrysts. J Petrol 58:1841–1870. https://doi.org/10.1093/petrology/egx075
Schubert C (1968) Geología de la región Barinitas-Santo Domingo, Andes venezolanos surorientales. Boletín de Geología del Ministerio de Minas e Hidrocarburos IX:181–261
Shagam R (1972) Evolución tectónica de Los Andes venezolanos. In: Memorias del IV Congreso Geológico Venezolano, Caracas, 1969. Boletín de Geología no. 5, Caracas, pp 1201–1261
Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America, Washington, D. C.
Spikings R, Paul AN (2019) The Permian–Triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly. In: Gómez J, Pinilla-Pachón AO (eds) The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, vol 36, pp 42. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.01
Spikings R, Cochrane R, Villagomez D et al (2015) The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Res 27:95–139. https://doi.org/10.1016/j.gr.2014.06.004
Tazzo-Rangel MD, Weber B, González-Guzmán R et al (2019) Multiple metamorphic events in the Palaeozoic Mérida Andes basement, Venezuela: insights from U-Pb geochronology and Hf–Nd isotope systematics. Int Geol Rev 61:1557–1593. https://doi.org/10.1080/00206814.2018.1522520
Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142. https://doi.org/10.1130/0091-7613(2002)030%3c1139:GDAO%3e2.0.CO;2
Tischendorf G, Rieder M, Förster H-J et al (2004) A new graphical presentation and subdivision of potassium micas. Mineral Mag 68:649–667. https://doi.org/10.1180/0026461046840210
Torsvik TH, Cocks LRM (2004) Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J Geol Soc Lond 161:555–572. https://doi.org/10.1144/0016-764903-098
Tracy RJ, Robinson P, Thompson AB (1976) Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. Am Mineral 61:762–775
Trail D, Mojzsis SJ, Harrison TM et al (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst. https://doi.org/10.1029/2006GC001449
Ueda K, Jacobs J, Thomas RJ et al (2012) Postcollisional high-grade metamorphism, orogenic collapse, and differential cooling of the East African Orogen of Northeast Mozambique. J Geol 120:507–530. https://doi.org/10.1086/666876
Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385. https://doi.org/10.2113/0530343
Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11. https://doi.org/10.1007/s004100050432
van der Lelij R, Spikings RA, Kerr AC et al (2010) Thermochronology and tectonics of the Leeward Antilles: evolution of the southern Caribbean Plate boundary zone. Tectonics. https://doi.org/10.1029/2009TC002654
van der Lelij R, Spikings R, Mora A (2016a) Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos 248–251:220–239. https://doi.org/10.1016/j.lithos.2016.01.006
van der Lelij R, Spikings R, Ulianov A et al (2016b) Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Res 31:271–294. https://doi.org/10.1016/j.gr.2015.01.011
Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase late carboniferous to triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358. https://doi.org/10.1007/s004100050132
Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404. https://doi.org/10.1007/s004100050492
Vega-Granillo R (2006) Petrología, termobarometría y análisis estructural en la región NW del Complejo Acatlán, Puebla, México: Implicaciones tectónicas. Dissertation, Universidad Nacional Autónoma de México
Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
Villagómez D, Spikings R, Magna T et al (2011) Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125:875–896. https://doi.org/10.1016/j.lithos.2011.05.003
Vinasco CJ, Cordani UG, González H et al (2006) Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. J S Am Earth Sci 21:355–371. https://doi.org/10.1016/j.jsames.2006.07.007
Waight T, Baker J, Willigers B (2002) Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb–Sr geochronology? Chem Geol 186:99–116. https://doi.org/10.1016/S0009-2541(01)00420-X
Warren CJ, Hanke F, Kelley SP (2012) When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chem Geol 291:79–86. https://doi.org/10.1016/J.CHEMGEO.2011.09.017
Weber B, Cameron KL, Osorio M, Schaaf P (2005) A Late Permian tectonothermal event in Grenville crust of the southern Maya terrane: U–Pb zircon ages from the Chiapas Massif, southeastern Mexico. Int Geol Rev 47:509–529. https://doi.org/10.2747/0020-6814.47.5.509
Weber B, Iriondo A, Premo WR et al (2007) New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. Int J Earth Sci (Geol Rundsch) 96:253–269. https://doi.org/10.1007/s00531-006-0093-7
Weber B, Valencia VA, Schaaf P et al (2008) Significance of provenance ages from the chiapas massif complex (Southeastern Mexico): redefining the paleozoic basement of the maya block and its evolution in a peri-gondwanan realm. J Geol 116:619–639. https://doi.org/10.1086/591994
Weber B, Valencia VA, Schaaf P, Ortega-Gutiérrez F (2009) Detrital zircon ages from the lower Santa Rosa formation, Chiapas: implications on regional Paleozoic stratigraphy. Rev Mex Cienc Geol 26:260–276
Weber B, Scherer EE, Martens UK, Mezger K (2012) Where did the lower Paleozoic rocks of Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study. Chem Geol 312–313:1–17. https://doi.org/10.1016/j.chemgeo.2012.04.010
Weber B, González-Guzmán R, Manjarrez-Juárez R et al (2018) Late Mesoproterozoic to Early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana. Lithos 300–301:177–199. https://doi.org/10.1016/j.lithos.2017.12.009
White RW, Powell R, Holland TJB et al (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286. https://doi.org/10.1111/jmg.12071
Whitney DL, Dilek Y (1997) Core complex development in central Anatolia, Turkey. Geology 25:1023–1026. https://doi.org/10.1130/0091-7613(1997)025%3c1023:CCDICA%3e2.3.CO;2
Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371
Whitney DL, Teyssier C, Vanderhaeghe O (2004) Gneiss domes and crustal flow. Spec Pap Geol Soc Am 380:15–33. https://doi.org/10.1130/0-8137-2380-9.15
Wiedenbeck M, Aleé P, Corfu F et al (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
Wiedenbeck M, Hanchar J, Peck WH et al (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39
Willigers BJA, Mezger K, Baker JA (2004) Development of high precision Rb–Sr phlogopite and biotite geochronology; an alternative to 40Ar/39Ar tri-octahedral mica dating. Chem Geol 213:339–358. https://doi.org/10.1016/J.CHEMGEO.2004.07.006
Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey
Wu CM (2015) Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. J Metamorph Geol 33:167–176. https://doi.org/10.1111/jmg.12115
Wu CM, Chen HX (2015a) Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci Bull 60:116–121. https://doi.org/10.1007/s11434-014-0674-y
Wu CM, Chen HX (2015b) Calibration of a Ti-in-muscovite geothermometer for ilmenite- and Al2SiO5-bearing metapelites. Lithos 212–215:122–127. https://doi.org/10.1016/j.lithos.2014.11.008
Wu CM, Zhao G (2006) Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. J Petrol 47:2357–2368. https://doi.org/10.1093/petrology/egl047
Wu CM, Zhao GC (2007) The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos 97:365–372. https://doi.org/10.1016/j.lithos.2007.01.003
Wu C, Zhang J, Ren L (2004) Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium- to high-grade metapelites*. J Petrol 45:1907–1921. https://doi.org/10.1093/petrology/egh038
Yardley B (1977) An empirical study of diffusion in garnet. Am Mineral 62:793–800
Yoshida K, Hirajima T (2015) 3D chemical mapping of “Mn-caldera shaped zoning” garnet found from the Sanbagawa metamorphic belt of the Besshi district, SW japan. J Mineral Petrol Sci 110:197–213. https://doi.org/10.2465/jmps.140701
Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineral Mag 68:769–786. https://doi.org/10.1180/0026461046850218
Acknowledgements
We thank Sergio Padilla-Ramírez, Centro de Investigación Científica y de Educación Superior de Ensenada B.C. (CICESE), México, for running the clean lab and the Nu-TIMS. Susana Rosas-Montoya, Víctor Pérez-Arroyo, and Gabriel Rendón-Márquez (all CICESE) for their help with sample preparation, and to Luis Gradilla-Martínez (CICESE) for performing CL images. We would also like to thank Liliana Corona and Ofelia Pérez-Arvizú, Laboratorio de Estudios Isotópicos (LEI-Centro de Geociencias UNAM) for assistance running the Neptune® MC-ICP-MS, Riana Rossouw for whole-rock chemical analyses at the Central Analytical Facilities (CAF) of the Stellenbosch University, and Thomas Ludwig for support with the O-isotope analyses at the Heidelberg Ion Probe (HIP) laboratory. This contribution was supported by CONACyT (Consejo Nacional de Ciencia y Tecnología) Grants CB-2016-01-285638 and INFR-2016–01–269082, as well as DFG (German Science Foundation) grant SCHM 2521/4-1. We are grateful to Dr. Uwe Altenberger, Dr. Ulrich Riller, and one anonymous reviewer for their constructive comments that significantly improved the quality of this manuscript. We are also thankful to the guest editors Dr. Ulrich Riller, Dr. Laura Giambiagi, and Dr. Manfred Strecker for their invitation to participate in this Special Issue, as well as to IJES Editor-in-Chief Dr. Wolf-Christian Dullo.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tazzo-Rangel, M.D., Weber, B., Schmitt, A.K. et al. Permo–Triassic metamorphism in the Mérida Andes, Venezuela: new insights from geochronology, O-isotopes, and geothermobarometry. Int J Earth Sci (Geol Rundsch) 110, 2465–2493 (2021). https://doi.org/10.1007/s00531-020-01926-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-020-01926-5