Skip to main content

Indicators of geodynamic control of the formation of mineral resources along a convergent plate margin: Sakhalin-South Kuril areas, Russia

Abstract

Areas of noble, rare metal and polymetallic mineralization and hydrocarbon fields on the Southern Kuril Islands and Sakhalin, in the Okhotsk Sea are located above deep fault zones in the oceanic lithosphere. Such fracture zones, including the Nosappu (Tuskarora), Iturup and Urup transform faults, are known at the southwestern end of the Kuril–Kamchatka Trench, on the northwestern margin of the Pacific Plate. Seismic tomography has established the northwestern continuation of these faults in the oceanic slab, which has been subducted into the mantle transition zone; the former has also been confirmed by focal mechanism solutions of the hypocenters of deep (up to 700 km) earthquakes. In the oceanic lithosphere the fracture zones in the areas of synfault extension enabled the formation of permeable channels that convey asthenospheric heat and fluids. In the southern Sea of Okhotsk area, these fluids penetrate the mantle wedge, initiating metasomatic processes in the sub-lithospheric mantle and the creation of primary magmatic reservoirs in the lower continental lithosphere. Further migration of these fluids enabled the formation intermediate magma chambers in the crust and of domes and ore bodies. Hydrocarbons are abiogenic and of mantle origin and occur in complex, faulted and folded Cenozoic basins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abukova LA, Dmitrievsky AN, Volozh YA, Antipov MP (2019) Geofluid dynamic concept of prospecting for hydrocarbon accumulations in the earth crust. Geotectonics 53:372–382. https://doi.org/10.1134/S0016852119030026

    Article  Google Scholar 

  2. Alexandrov IA, Pan Z, Ivin VV, Jia-Ping L, Bor-ming J (2017) Formation of the continental crust of Sakhalin Island on the northeastern edge of Eurasia. In: Dobretsov NL (ed) Materials of the meeting “Geology and Minerageny of Northern Eurasia”. IGiM SB RAS, Novosibirsk, pp 14–16

  3. Armel M, Laurent J, Johann T, Christelle L, Guillaume B, Laurent G-F (2018) 3D subduction dynamics: a first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geol Rev 94:118–135. https://doi.org/10.1016/j.oregeorev.2018.01.023

    Article  Google Scholar 

  4. Avdeiko GP, Palueva AA, Khleborodova OA (2006) Geodynamic conditions of volcanism and magma formation in the Kurile-Kamchatka island-arc system. Petrology 14:230–246. https://doi.org/10.1134/S0869591106030027

    Article  Google Scholar 

  5. Babushkina MS, Ugolkov VL, Marin YB, Nikitina LP, Goncharov AG (2018) Hydrogen and carbon groups in the structures of rock-forming minerals of rocks of the lithospheric mantle: FTIR and STA + QMS Data. Dokl Earth Sci 479:456–459. https://doi.org/10.1134/S1028334X18040013

    Article  Google Scholar 

  6. Chelnokov GA, Zharkov RV, Bragin IV, Veselov OV, Kharitonova NA, Shakirov RB (2015) Geochemical characteristics of subterranean fluids of the southern central Sakhalin fault. Tikhookeanskaya geologiya 34:81–95

    Google Scholar 

  7. Chil-Sup S, Danchenko VY, Seong-Tack Y, Maeng-Eon P, Seon-Cyu C, Shelton KL (1995) Te- and Se- bearing epithermal Au-Ag mineralization, Prasolovskoye, Kunashir Island, Kuril Island. Arc Econ Geol 90:105–117

    Google Scholar 

  8. Danchenko VY (1991) The ratio of gold and gold-silver mineralization in the fold-block structures of Eastern Sakhalin. In: Khomich VG (ed) Ratio of different types of mineralization of volcanic-plutonic belts of the Asia-Pacific junction zone. FEB AS USSR, Vladivostok, pp 43–60

    Google Scholar 

  9. Danchenko VY (1999) Rare metals in the ores of the Kuril Islands. IMGiG FEB RAS, Yuzhno-Sahalinsk

    Google Scholar 

  10. Danchenko VY (2003) Geological position and real-genetic types of mineralization of rare and noble metals in the South Okhotsk region of the Pacific Rim. IMGiG Sakh. Scientific Center of FEB RAS, Yuzhno-Sakhalinsk

    Google Scholar 

  11. Danchenko VY, Zharov AE, Nikolaeva LN (1997) Minerals of placers as indicators of different types of gold and platinum gold mining in Sakhalin. Tikhookeanskaya geologiya 16:59–72

    Google Scholar 

  12. Distler VV, Dikov YuP, Yudovskaya MA, Chaplygin IV, Buleev MI (2008) Platinum-chlorine-phosphorus-hydrocarbon complex in volcanic fluids: the first find in the terrestrial environment. Dokl Earth Sci 420:628–631. https://doi.org/10.1134/S1028334X08040223

    Article  Google Scholar 

  13. Fletcher M, Wyman DA, Zahirovic S (2020) Mantle plumes, triple junctions and transforms: a reinterpretation of Pacific Cretaceous–Tertiary LIPs and the Laramide connection. Geosci Front 11:1133–1144. https://doi.org/10.1016/j.gsf.2019.09.003

    Article  Google Scholar 

  14. Fujiwara T, Hirano N, Abe N, Takizawa K (2006) Subsurface Structure of the "Petit-spot" Intra-plate Volcanism, in the Northwestern Pacific. JAMSTEC Rep Res Dev 3:31–42

    Google Scholar 

  15. Gladenkov YV, Bazhenova OK, Grechin VI, Margulis LS, Salnikov BA (2002) Cenozoic Sakhalin and its oil-and-gas content. GEOS, Moscow

    Google Scholar 

  16. Glorie S, Alexandrov I, Nixon A, Jepson G, Gillespie J, Jahn B-M (2017) Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology. J Asian Earth Sci 143:326–342. https://doi.org/10.1016/j.jseaes.2017.05.011

    Article  Google Scholar 

  17. Govorov GI (2002) Phanerozoic magmatic belts and the formation of the structure of the Okhotsk geoblock. Dalnauka, Vladivostok

    Google Scholar 

  18. Grave JD, Zhimulev FI, Glorie S, Kuznetsov GV, Evans N, Vanhaecke F, Mclnnes B (2016) Late Palaeogene emplacement and late Neogene-Quaternary exhumation of the Kuril island-arc root (Kunashir island) constrained by multi-method thermochronometry. Geosci Front 7:211–220. https://doi.org/10.1016/j.gsf.2015.05.002

    Article  Google Scholar 

  19. Hirano N (2011) Petit-spot volcanism: a new type of volcanic zone discovered near a trench. Geochem J 45:157–167

    Google Scholar 

  20. Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle SP, Kaneoka I, Kimura J, Hirata T, Ishii T, Ogawa Y, Machida S, Suyehiro K (2006) Volcanism in response to plate flexure. Science 313:1426–1428

    Google Scholar 

  21. Hronsky JMA, Groves DI, Loucks RR, Begg GC (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner Deposita 47(4):339–358. https://doi.org/10.1007/s00126-012-0402-y

    Article  Google Scholar 

  22. James DE, Fouch MJ, Carlson RW, Roth JB (2011) Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet Sci Lett 311:124–135. https://doi.org/10.1016/j.epsl.2011.09.007

    Article  Google Scholar 

  23. Jian W, Chun-Feng Li (2015) Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle. Tectonophysics 638:112–125. https://doi.org/10.1016/j.tecto.2014.11.002

    Article  Google Scholar 

  24. Kasahara J, Sato T, Mochizuki K, Kobayashi K (1997) Paleotectonic structures and their influence on recent seismo-tectonics in the south Kuril subduction zone. Island Arc 6:267–280

    Google Scholar 

  25. Kasatkin SA (2012) Modern shear dislocations in the seismic focal zone of the Okhotsk region and importance of the Nosappu fault zone in the formation of the North Sakhalin oil and gas region. In: Gliko AO, Leonov YG (eds) Tectonophysics and topical issues of Earth sciences, vol 2. IFZ RAN, Moscow, pp 309–312

    Google Scholar 

  26. Kasatkin SA, Golozubov VV (2011) Cenozoic deformations and modern stress fields of Sakhalin Island. In: Leonov YG (ed) Proceedings of Russian Scientific Conference with foreign participants “Geological processes in the lithospheric plates subduction, collision, and slide environments”. Dalnauka, Vladivostok, pp 82–85

  27. Kasatkin SA, Obzhirov AI (2018) Fluid-controlling significance of the Nosappu fracture zone and conditions for the formation of methane fluxes and gas hydrates (Sea of Okhotsk Region). Russ J Pac Geol 12:57–62. https://doi.org/10.1134/S1819714018010025

    Article  Google Scholar 

  28. Kemkina RA, Kemkin IV (2007) Mineral composition of ores and mineralogical-geochemical technique of a rating potential pollution of an environment by toxic elements (on an example of Prasolovka Au-Ag deposit). Dalnauka, Vladivostok

    Google Scholar 

  29. Khanchuk AI (2006) Geodynamics, magmatism, and metallogeny of the Russian East. Dalnauka, Vladivostok

    Google Scholar 

  30. Kharakhinov VV (2010) Oil and gas geology of the Sakhalin region. Nauchnyi mir, Moscow

    Google Scholar 

  31. Khomich VG, Boriskina NG, Kasatkin SA (2019) Geology, magmatism, metallogeny, and geodynamics of the South Kuril Islands. Ore Geol Rev 105:151–162. https://doi.org/10.1016/j.oregeorev.2018.12.015

    Article  Google Scholar 

  32. Kirillov VB, Goroshko MV (2008) Gold of the Urup Island belonging to the Bolshekurilsk Arc Islands. Reg Probl 9:50–55

    Google Scholar 

  33. Korzhinskii MA, Tkachenko SI, Shmulovich KI, Taran YuA, Shteynberg GS (1994) Discovery of pure rhenium mineral at Kudriavy volkano. Nature 369:51–52

    Article  Google Scholar 

  34. Korzhinskii MA, Tkachenko SI, Bulgakov RF, Shmulovich KI (1996) Condensate compositions and native metals in sublimates of high-temperature gas streams of Kudryavyi volcano, Iturup Island, Kuril Island. Geochem Int 34:1057–1064

    Google Scholar 

  35. Koulakov IY, Dobretsov NL, Bushenkova NA, Yakovlev AV (2011) Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results. Russ Geol Geophys 6:650–667. https://doi.org/10.1016/j.rgg.2011.05.008

    Article  Google Scholar 

  36. Kovalenker VA, Laputina IP, Znamenskii VS, Zotov IA (1993) Indium mineralization of the Great Kurile island-arc. Geologiya rudnykh mestorozhdenii 35:547–552

    Google Scholar 

  37. Kuiper YD, Wakabayashi J (2018) A comparison between mid-Paleozoic New England, USA, and the modern western USA: subduction of an oceanic ridge-transform fault system. Tectonophysics 745:278–292. https://doi.org/10.1016/j.tecto.2018.08.020

    Article  Google Scholar 

  38. Lesnov VP (2015) Petrology of polygenic mafic-ultramafic massifs of the East-Sakhalin ophiolitic association. Academic publishing house Geo, Novosibirsk

    Google Scholar 

  39. Letnikov FA (2006) Fluid regime of endogenous processes and problems of ore genesis. Geologiya i geophysika 47:1296–1308

    Google Scholar 

  40. Letnikov FA, Shumilova TG, Medvedev VY, Ivanova LA (2018) Transport and crystallization of noble platinum in supercritical C–O–H fluid. Dokl Earth Sci 479:460–462. https://doi.org/10.1134/S1028334X18040049

    Article  Google Scholar 

  41. Marakushev AA, Marakushev SA (2008) Formation of oil and gas fields. Lithol Min Resour 43:454–469. https://doi.org/10.1134/S0024490208050039

    Article  Google Scholar 

  42. Marakushev AA, Paneyakh NA, Rusinov VL, Zotov IA (2007) Paragenesis of ore metals with hydrocarbonic specific character. Article 1. Oxyphilic metals. Izvestiya VUZov Geologyay i razvedka 6:33–40

    Google Scholar 

  43. Marakushev AA, Paneyakh NA, Marakushev SA (2014) Sulphide formation and its hydrocarbon specialization. GEOS, Moscow

    Google Scholar 

  44. Nakanishi M, Tamaki K, Kobayashi K (1989) Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific. J Geophys Res 94:15437–15462

    Google Scholar 

  45. Nakanishi M et al (1993) Topographic expression of five fracture zones in the northwestern Pacific Ocean. In: Pringle MS, et al. (eds) The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophys Monogr Ser, vol 77. AGU, Washington, pp 121–135

    Google Scholar 

  46. Nikiforov VM, Shkabarnya GN, Zhukovin AY, Kaplun VB, Taltykin YV (2018) A new approach to the study of the block geoelectric structure of the lithosphere and fluid-saturated fragments of faults as indicators of zones with increased seismicity according to magnetotelluric sounding data for Southern Sakhalin. Russ J Pac Geol 12:278–288. https://doi.org/10.1134/S1819714018040048

    Article  Google Scholar 

  47. Norton IO (2007) Speculations on Cretaceous tectonic history of the northwest Pacific and a tectonic origin for the Hawaii hotspot. Spec Pap Geol Soc Am 430:451–470

    Google Scholar 

  48. Ogawa Y, Hirano N (2003) En echelon knolls in the Nosappu Fracture Zone, NW Pacific: A possible leaky transform fault zone II Shipboard Scientific Party Kr03-07. American Geophysical Union. Fall Meeting, Abstract #V21D-0553

  49. Radziminovich YB, Shchetnikov AA, Voogin YG (2010) The earthquake of 1912 on Lake Baikal as the reason for the release of methane. In: Didenko AN (ed) Proceeding of scientific symposium “Problems of seismicity and recent geodynamics of the far East and Eastern Siberia”. ITiG DVO RAN, Khabarovsk, pp 265–268

  50. Razin LV (2011) Recent volcano genesis platinum and gold bearing mineralisation on Kunashyr Island related to young andesite-basalt volcanism of Great Kurilian Bank. In: Dodin D (ed) Platinum of Russia. Collection of transactions, vol VII. Krasnoyarsk, pp 476–493

  51. Redder E (1982) Fluid inclusions—relics of ore-forming solutions. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Mir, Moscow, pp 535–577

    Google Scholar 

  52. Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37(3):247–250. https://doi.org/10.1130/G25451A.1

    Article  Google Scholar 

  53. Rozhdestvenskii VS (1987) Tectonic development of Sakhalin Island). Tikhookeanskaya geologiya 3:42–51

    Google Scholar 

  54. Rybin AV, Danchenko VY (1994) Intrusive rocks of the Great Kurile Ridge: petrography and petrogenesis. IMGiG DVO RAN, Yuzhno-Sakhalinsk

    Google Scholar 

  55. Saprygin SM (1997) Tectonic fluid dynamics. Sakhalin Book Publishing House, Yuzhno-Sakhalinsk

    Google Scholar 

  56. Sergeev KF (2006) Tectonic zoning and hydrocarbon potential of the Okhotsk sea. Sakhalin Book Publishing House, Yuzhno-Sakhalinsk

    Google Scholar 

  57. Shakirov RB (2014) Chemical and isotopic characteristics of hydrocarbon gases from Mendeleev and Golovnin volcanoes, Kunashir Island. Geochem Int 52:247–259. https://doi.org/10.1134/S0016702914010066

    Article  Google Scholar 

  58. Shakirov RB, Syrbu NS, Obzhirov AI (2012) Isotope-gasgeochmical features of methane and carbon dioxid distribution on Sakhalin Island and adjacent shelf of the sea of Okhotsk. Vestnik KRAUNZ Nauki o zemle 20:100–113

    Google Scholar 

  59. Shakirov RB, Obzhirov AI, Salomatin AS, Makarov MM (2017) New data on lineament control of modern centers of methane degassing in east Asian seas. Dokl Earth Sci 477:1287–1290. https://doi.org/10.1134/S1028334X17110241

    Article  Google Scholar 

  60. Shevyrev SL (2019) Neotectonics, remote sensing and erosion cut of ore-controlling structures of the Mnogovershinnoe gold-silver deposit (Khabarovsk Krai, Russian Far East). Ore Geol Rev 108:8–22. https://doi.org/10.1016/j.oregeorev.2018.11.016

    Article  Google Scholar 

  61. Shiraishi F, Eno Y, Nakamura Y, Hanzawa Y, Asada J, Bahniuk AM (2019) Relative influence of biotic and abiotic processes on travertine fabrics, Satono-yu hot spring, Japan. Sedimentology 66: 459–479. https://onlinelibrary.wiley.com/doi/full/10.1111/sed.12482

  62. Sigloch K (2011) Mantle provinces under North America from multifrequency P wave tomography. Geochem Geophys Geosyst 12:Q02W08. https://doi.org/10.1029/2010GC003421

    Article  Google Scholar 

  63. Stepashko AA, Lesnov FP (2018) Oceanic and continental mantle fragments in ophiolites of the northwestern pacific margins: composition, age, and genesis of Sakhalin Peridotites. Oceanology 58:459–469. https://doi.org/10.1134/S0001437018030189

    Article  Google Scholar 

  64. Tao R, Zhang L, Tian M, Zhu J, Liu Xi, Liu J, Hoefer HE, Stagno V, Fei Y (2018) Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation. Geochim Cosmochim Acta 239:390–408. https://doi.org/10.1016/j.gca.2018.08.008

    Article  Google Scholar 

  65. Tkachenko SI, Taran YuA, Korzhinskii AM, Pokrovskii BG, Shteinberg GS, Shmulovich KI (1992) Gas streams of Kudryavyi volcano, Iturup Island, Kuril Islands. Doklady AN SSSR 325:823–828

    Google Scholar 

  66. Vysotskii SV, Govorov GI, Kemkin IV, Sapin VI (1998) Boninite-ophiolite association of Eastern Sakhalin: geology and some features of petrogenesis. Tikhookeanskaya geologiya 17:3–15

    Google Scholar 

  67. Yudovskaya MA, Distler VV, Chaplygin IV, Mokhov AV, Trubkin NV, Gorbacheva SA (2006) Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands. Miner Deposita 40:828–848. https://doi.org/10.1007/s00126-005-0034-6

    Article  Google Scholar 

  68. Zhao D, Pirajno F, Dobretsov NL, Liu L (2010) Mantle structure and dynamics under East Russia and adjacent regions. Russ Geol Geophys 51:925–938. https://doi.org/10.1016/j.rgg.2010.08.003

    Article  Google Scholar 

  69. Zhao P, Li J-J, Alexandrov I, Ivin V (2017) Involvement of old crustal materials during formation of the Sakhalin Island (Russian Far East) and its paleogeographic implication: constraints from detrital zircon ages of modern river sand and Miocene sandstone. J Asian Earth Sci 146:412–430. https://doi.org/10.1016/j.jseaes.2017.06.031

    Article  Google Scholar 

  70. Zharov AE (2004) Geological structure and Cretaceous-Paleogene geodynamics of Southeast Sakhalin. Sakhalin Book Publishing House, Yuzhno-Sakhalinsk

    Google Scholar 

  71. Znamenskii VS, Laputina IP, Taran YuA, Yakushev AI (1993) The ore deposition from high-temperature gas jets of Kudryavy volcano, Iturup, the Kuril Islands. Doklady AN SSSR 333:227–230

    Google Scholar 

  72. Zonenshain LP, Kuzmin MI (1992) Paleogeodynamics. Nauka, Moscow

    Google Scholar 

Download references

Acknowledgements

We are grateful to Tim Horscroft for his constructive comments and great help improving abstract in this paper. The authors deeply acknowledge Dr. Sergei A. Kasatkin for the priceless consultations in the creation of the model. We are grateful to the Anonymous reviewers and to the Editor-in-Chief Prof. Wolf-Christian Dullo for their constructive and helpful comments that greatly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vadim G. Khomich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khomich, V.G., Nemeth, K. & Boriskina, N.G. Indicators of geodynamic control of the formation of mineral resources along a convergent plate margin: Sakhalin-South Kuril areas, Russia. Int J Earth Sci (Geol Rundsch) 109, 2759–2772 (2020). https://doi.org/10.1007/s00531-020-01923-8

Download citation

Keywords

  • Deep faults
  • Fluid-heat flows
  • Noble-
  • Rare metal mineralization
  • Oil and gas fields