Skip to main content

Grain size distribution and sedimentology in volcanic mass-wasting flows: implications for propagation and mobility

Abstract

The sedimentological characteristics of mass-wasting flow deposits are important for assessing the differences between phenomena and their propagation and emplacement mechanisms. In the present study, nine volcanic debris avalanche deposits and eight lahar deposits are considered, from the literature. Their sedimentology is expressed in the descriptive statistics: median grain size, sand, gravel and finer particle fractions, skewness and sorting. Analysis of the data confirms that lahars and debris avalanches diverge in their grain size distribution and in their evolution during propagation. Water saturation in lahars is the main factor enabling debulking, a mechanism that is not recorded in the data derived from debris avalanches deposits. On the contrary, evidence of comminution of particles due to particle-particle interactions is observed in debris avalanches, and not in lahars. These findings support previous studies suggesting that although water content in debris avalanches plays a role in propagation, the effects of inertial collision of solid fragments are more important than fluid effects, confirming that particle-particle interactions are the main factor influencing the mobility of non-saturated mass wasting flows.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225:49–63. https://doi.org/10.1098/rspa.1954.0186

    Article  Google Scholar 

  2. Banton J, Villard P, Jongmans D, Scavia C (2009) Two-dimensional discrete element models of debris avalanches: parameterization and the reproducibility of experimental results. J Geophys Res Earth Surf 114:1–15. https://doi.org/10.1029/2008JF001161

    Article  Google Scholar 

  3. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342. https://doi.org/10.1007/s004450050300

    Article  Google Scholar 

  4. Bernard B, van Wyk de Vries B, Barba D et al (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176:36–43. https://doi.org/10.1016/j.jvolgeores.2008.03.012

    Article  Google Scholar 

  5. Bernard B, van Wyk de Vries B, Leyrit H (2009) Distinguishing volcanic debris avalanche deposits from their reworked products: the perrier sequence (French Massif Central). Bull Volcanol 71:1041–1056. https://doi.org/10.1007/s00445-009-0285-7

    Article  Google Scholar 

  6. Bernard K, Thouret JC, van Wyk de Vries B (2017) Emplacement and transformations of volcanic debris avalanches—a case study at El Misti volcano, Peru. J Volcanol Geotherm Res 340:68–91. https://doi.org/10.1016/j.jvolgeores.2017.04.009

    Article  Google Scholar 

  7. Caballero L, Capra L (2011) Textural analysis of particles from El Zaguán debris avalanche deposit, Nevado de Toluca volcano, Mexico: evidence of flow behavior during emplacement. J Volcanol Geotherm Res 200:75–82. https://doi.org/10.1016/j.jvolgeores.2010.12.003

    Article  Google Scholar 

  8. Caballero L, Sarocchi D, Soto E, Borselli L (2014) Rheological changes induced by clastfragmentation in debrisflows. J Geophys Res Earth Surf 119:1800–1817. https://doi.org/10.1002/2013JF002871.Received

    Article  Google Scholar 

  9. Capra L, Poblete MA, Alvarado R (2004) The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards. J Volcanol Geotherm Res 131(3–4):351–369

    Google Scholar 

  10. Clague J, Stead D (eds) (2012) Landslides: types, mechanisms and modelling. Cambridge University Press, Cambridge, UK

    Google Scholar 

  11. Collins GS, Melosh HJ (2003) Acoustic fluidization and the extraordinary mobility of sturzstroms. J Geophys Res Solid Earth 108:1–14. https://doi.org/10.1029/2003jb002465

    Article  Google Scholar 

  12. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Google Scholar 

  13. Crandell DR (1971) Postglacial lahars from Mount Rainier Volcano, Washington. US Geol Surv Prof Pap 667:80

    Google Scholar 

  14. Crandell DR, Miller CD, Glicken HX et al (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146. https://doi.org/10.1130/0091-7613(1984)12<143:CDAFAM>2.0.CO;2

    Article  Google Scholar 

  15. Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 24:9–24

    Google Scholar 

  16. Davies TR, McSaveney MJ (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 39(4):789–798

    Article  Google Scholar 

  17. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79. https://doi.org/10.1016/j.enggeo.2008.11.004

    Article  Google Scholar 

  18. Davies TR, McSaveney MJ (2012) Mobility of long-runout rock avalanches. In: Clague JJ, Stead D (eds) Landslides–types, mechanisms and modeling. Cambridge University Press, pp 50–58

  19. Davies DK, Quearry MW, Bonis SB (1978) Glowing avalanches from the 1974 eruption of the volcano Fuego, Guatemala. Bull Geol Soc Am 89:369–384. https://doi.org/10.1130/0016-7606(1978)89<369:GAFTEO>2.0.CO;2

    Article  Google Scholar 

  20. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Res Solid Earth 106:537–552. https://doi.org/10.1029/2000JB900329

    Article  Google Scholar 

  21. Dufresne A (2009) Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modeling. PhD thesis, University of Canterbury, Canterbury, New Zealand

  22. Dufresne A, Dunning S (2017) Process dependence of grain size distributions in rock avalanche deposits. Landslides 14:1555–1563. https://doi.org/10.1007/s10346-017-0806-y

    Article  Google Scholar 

  23. Dufresne A, Bösmeier A, Prager C (2016a) Sedimentology of rock avalanche deposits—case study and review. Earth-Sci Rev 163:234–259. https://doi.org/10.1016/j.earscirev.2016.10.002

    Article  Google Scholar 

  24. Dufresne A, Prager C, Bösmeier A (2016b) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria). Earth Surf Process Landforms 41:587–602. https://doi.org/10.1002/esp.3847

    Article  Google Scholar 

  25. Dufresne A, Geertsema M, Shugar DH et al (2017) Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska. Sediment Geol 364:302–318. https://doi.org/10.1016/j.sedgeo.2017.10.004

    Article  Google Scholar 

  26. Dunning SA (2004) Rock avalanches in high mountains. PhD Thesis

  27. Einav I (2007) Breakage mechanics—Part II: modelling granular materials. J Mech Phys Solids 55:1298–1320. https://doi.org/10.1016/j.jmps.2006.11.004

    Article  Google Scholar 

  28. Erismann TH (1979) Mechanisms of large landslides. Rock Mech Felsmechanik Mécanique des Roches. https://doi.org/10.1007/BF01241087

    Article  Google Scholar 

  29. Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer Science & Business Media, Berlin

    Google Scholar 

  30. Fisher RV, Schmincke H-U, Fisher RV, Schmincke H-U (1984) Lahars. Pyroclastic rocks. Springer, Berlin Heidelberg, pp 297–311

    Google Scholar 

  31. Folk RL (1968) Petrologie of sedimentary rocks. Hemphll Publ Company, Austin, p 170. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  32. Folk RL, Ward WC (1957) Brazos River Bar: A study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  33. Francis PW, Wells GL (1988) Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bull Volcanol 50:258–278

    Article  Google Scholar 

  34. Francis PW, Gardeweg M, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603. https://doi.org/10.1130/0091-7613(1985)13<600:CDADOS>2.0.CO;2

    Article  Google Scholar 

  35. Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: Insights from granular physics experiments. Int J Earth Sci 95:911–919. https://doi.org/10.1007/s00531-006-0067-9

    Article  Google Scholar 

  36. Glicken H (1991) Sedimentary architecture of large volcanic-debris avalanches. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. SEPM Spec Pub 45. SEPM, Tulsa, OK, pp 99–106

    Chapter  Google Scholar 

  37. Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. USGS Open File Report 96–677. Bull Surv

  38. Godoy B, Rodríguez I, Pizarro M, Rivera G (2017) Geomorphology, lithofacies, and block characteristics to determine the origin, and mobility, of a debris avalanche deposit at Apacheta-Aguilucho Volcanic Complex (AAVC), northern Chile. J Volcanol Geotherm Res 347:136–148. https://doi.org/10.1016/j.jvolgeores.2017.09.008

    Article  Google Scholar 

  39. Goguel J (1978) Scale-dependent rockslide mechanisms, with the emphasis on the role of pore fluid vapourization. In: Voight BD (ed) Rockslides and avalanches, 1, natural phenomena. Elsevier, Amsterdam, pp 693–705

    Google Scholar 

  40. Gorshkov GS, Dubik YM (1970) Gigantic directed blast at Shiveluch Volcano (Kamchatka). Bull Volcanol 34:262–288

    Google Scholar 

  41. Griswold JP, Iverson RM (2007) Mobility statistics and automated hazard mapping for debris flows and rock avalanches scientific investigations report 2007–5276. USGS Sci Investig Rep 2007–5276:62

    Google Scholar 

  42. Habib P (1975) Production of gasous pore pressure during rock slides. Rock Mech 7:193–197

    Google Scholar 

  43. Heim A (1882) Der Bergstürz von Elm. Zeitschrift der Deutschen Geologischen Gesellschaft 34(1):74–115

    Google Scholar 

  44. Heim A (1932) Bergstürz und Menschenleben. Fretz & Wasmuth Verlag, Zürich

    Google Scholar 

  45. Hörz F, Cintala MJ, See TH et al (1984) Grain size evolution and fractionation trends in an experimental regolith. J Geophys Res 89:C183. https://doi.org/10.1029/jb089is01p0c183

    Article  Google Scholar 

  46. Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Bull Geol Soc Am. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    Article  Google Scholar 

  47. Hungr O (2002) Rock avalanche motion, process and modeling. In: Evans SG, Martino S (eds) Abstract volume NATO and advanced research workshop: massive rock slope failure: new models for hazard assessment, Celano, Italy, 16–21 June 2002, pp 66–69

  48. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Bull Geol Soc Am 116:1240–1252. https://doi.org/10.1130/B25362.1

    Article  Google Scholar 

  49. Hürlimann M, Ledesma A (2003) Giant mass movements in volcanic islands: the case of Tenerife. In: Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills, Sorrento, pp 105–115

  50. Inman D (1952) Measures for describing the size distribution of sediments. SEPM J Sediment Res. https://doi.org/10.1306/d42694db-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  51. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. https://doi.org/10.1029/97RG00426

    Article  Google Scholar 

  52. Janda RJ, Scott KM, Nolan M, Martinson H (1981) Lahar movement, effects, and deposits. In: Lipman PW, D.R. M (eds) The 1980 eruption of Mount St. Helens, Washington, 1250th edn. U.S. Geol. Surv., Prof. Pap., pp 461–478

  53. Johnson B (1978) Blackhawk landslide, California, USA. In: Rockslides and avalanches 1: natural phenomena. Elsevier, Amsterdam, pp 481–504

    Google Scholar 

  54. Katayama N (1974) Old records of natural phenomena concerning the “Shimabara Catastrophe”. Science Reports of the Shimabara Volcano Observatory, Kyushu University, Japan, No 9, pp 1–45 (in Japanese with English abstract)

  55. Kent PE (1966) The transport mechanism in catastrophic rock falls. J Geol 74:79–83

    Google Scholar 

  56. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122:309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122

    Article  Google Scholar 

  57. Lavigne F, Thouret JC (2002) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49:45–69. https://doi.org/10.1016/S0169-555X(02)00160-5

    Article  Google Scholar 

  58. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331. https://doi.org/10.1016/S0013-7952(01)00090-4

    Article  Google Scholar 

  59. Magnarini G, Mitchell TM, Grindrod PM et al (2019) Longitudinal ridges imparted by high-speed granular flow mechanisms in martian landslides. Nat Commun 10:1–7. https://doi.org/10.1038/s41467-019-12734-0

    Article  Google Scholar 

  60. Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41:133–151. https://doi.org/10.1007/s00603-007-0134-y

    Article  Google Scholar 

  61. Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10:23–36. https://doi.org/10.1007/s10346-011-0313-5

    Article  Google Scholar 

  62. Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res Solid Earth 84(B13):7513–7520

    Article  Google Scholar 

  63. Palmer B, Alloway B, Vincent N (1991) Volcanic-debris-avalanche deposits in new zealand—lithofacies organization in unconfined, wet-avalanche flows. Sediment Volcan Settings 89–98: https://doi.org/10.2110/pec.91.45.0089

    Article  Google Scholar 

  64. Perinotto H, Schneider JL, Bachèlery P et al (2015) The extreme mobility of debris avalanches: a new model of transport mechanism. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB011994

    Article  Google Scholar 

  65. Pierson TC, Scott KM (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resour Res 21:1511–1524. https://doi.org/10.1029/WR021i010p01511

    Article  Google Scholar 

  66. Pistolesi M, Cioni R, Rosi M, Cashman KV, Rossotti A, Aguilera E (2013) Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bull Volcanol 75(3):698

    Google Scholar 

  67. Prostka HJ (1978) Heart Mountain fault and Absaroka volcanism, Wyoming and Montana, USA. In: Voight B (ed) Rockslides and avalanches, pp 423–437

  68. Roberti G, Friele P, van Wyk de Vries B et al (2017) Rheological evolution of the mount meager 2010 debris avalanche, southwestern British Columbia. Geosphere 13:1–22. https://doi.org/10.1130/GES01389.1

    Article  Google Scholar 

  69. Roverato M, Capra L (2013) Características microtexturales como indicadores del transporte y emplazamiento de dos depósitos de avalancha de escombros del Volcán de Colima (México).pdf. 512–525

  70. Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207:33–46. https://doi.org/10.1016/j.jvolgeores.2011.07.003

    Article  Google Scholar 

  71. Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Bull Geol Soc Am 127:3–18. https://doi.org/10.1130/B30946.1

    Article  Google Scholar 

  72. Roverato M, Larrea P, Casado I et al (2018) Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Equador. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2018.07.006

    Article  Google Scholar 

  73. Saucedo R, Macías JL, Sarocchi D et al (2008) The rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at Nevado de Colima Volcano, Mexico. J Volcanol Geotherm Res 173:69–83. https://doi.org/10.1016/j.jvolgeores.2007.12.045

    Article  Google Scholar 

  74. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Felsmechanik Mécanique des Roches 5:231–236. https://doi.org/10.1007/BF01301796

    Article  Google Scholar 

  75. Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. In: Proceedings of fourth international symposium landslides, Toronto, vol 1, pp 567–572

  76. Scott KM (1988) Origins, behavior, and sedimentology of lahars and lahar-runout flows in the Toutle-Cowlitz River system. U S Geol Surv Prof Pap 74

  77. Scott KM, Macias JL, Naranjo JA, Rodríguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies (No 1630). US Department of the Interior, US Geological Survey

  78. Sharpe CFS (1938) Landslides and related phenomena: a study of mass movement of soil and rock. Columbia Uni Press, New York, p 136

    Google Scholar 

  79. Shreve RL (1968) The Blackhawk landslide. Geological Society of America Special Papers 108

  80. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197. https://doi.org/10.1016/0377-0273(84)90002-7

    Article  Google Scholar 

  81. Siebert L (2002) Landslides resulting from structural failure of volcanoes. GSA Rev Eng Geol 15:209–235. https://doi.org/10.1130/REG15-p209

    Article  Google Scholar 

  82. Siebert L, Alvarado GE, Vallance JW, van Wyk de Vries B (2006) Large-volume volcanic edifi ce failures in Central America and associated hazards. Spec Pap Geol Soc Am 412:1–26. https://doi.org/10.1130/2006.2412(01)

    Article  Google Scholar 

  83. Siebert L, Begét JE, Glicken H (1995) The 1883 and late-prehistoric eruptions of Augustine volcano, Alaska. J Volcanol Geotherm Res 66:367–395. https://doi.org/10.1016/0377-0273(94)00069-S

    Article  Google Scholar 

  84. Siebert L, Kimberly P, Pullinger CR (2004) The voluminous Acajutla debris avalanche from Santa Ana volcano, western El Salvador, and comparison with other Central American edifice-failure events. Spec Pap Geol Soc Am 375:5–23. https://doi.org/10.1130/0-8137-2375-2.5

    Article  Google Scholar 

  85. Smyth M-A (1991) Movement and emplacement mechanisms of the Rio Pita Volcanic Debris Avalanche and its role in the evolution of Cotopaxi Volcano. Aberdeen Univ Thesis, PhD

  86. Smyth MA, Clapperton CM (1986) Late Quaternary volcanic debris avalanche at Cotopaxi, Ecuador. Rev CIAF (Bogota) 11(1):24–38

    Google Scholar 

  87. Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:1–14. https://doi.org/10.1007/s00445-014-0881-z

    Article  Google Scholar 

  88. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150. https://doi.org/10.1016/0377-0273(83)90006-9

    Article  Google Scholar 

  89. Ui T (1985) Debris avalanche deposits associated with volcanic activity. In: Proceeding of IVth international conference and field workshop on landslides, Tokyo, Japan, pp 405–410

  90. Ui T (1989) Discrimination between debris avalanches and other volcaniclastic deposits. 201–209. https://doi.org/10.1007/978-3-642-73759-6_13

  91. Ui T, Glicken H (1986) Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA. Bull Volcanol 48:189–194. https://doi.org/10.1007/BF01087673

    Article  Google Scholar 

  92. Vallance JW (2000) Lahars. In: Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Elsevier Science & Technology, pp 601–616

  93. Vallance JW, Iverson RM (2015) Lahars and their deposits (2nd edn). Elsevier, Netherlands

    Google Scholar 

  94. Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. Bull Geol Soc Am. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2

    Article  Google Scholar 

  95. van Wyk de Vries B, Delcamp A (2015) Volcanic debris avalanches. Elsevier Inc, Netherlands

    Google Scholar 

  96. Vázquez R, Capra L, Caballero L, Arámbula-Mendoza R, Reyes-Dávila G (2014) The anatomy of a lahar: deciphering the 15th September 2012 lahar at Volcán de Colima, Mexico. J Volcanol Geotherm Res 272:126–136

    Google Scholar 

  97. Vezzoli L, Apuani T, Corazzato C, Uttini A (2017) Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies. J Volcanol Geotherm Res 332:51–70. https://doi.org/10.1016/j.jvolgeores.2017.01.004

    Article  Google Scholar 

  98. Voight B, Glicken H, Janda RJ, Douglass M (1981) Catastrophic rockslide avalanche of May 18 ( Mount St. Helens). US Geol Surv Prof Pap 1250:347–377

    Google Scholar 

  99. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273. https://doi.org/10.1680/geot.1983.33.3.243

    Article  Google Scholar 

  100. Voight B, Janda RJ, Glicken H, Douglass PM (1985) Reply to Mr Skermer, in Discussion of Voight et al. (1983). Geotechnique 35:362–369

    Google Scholar 

  101. Voight B, Komorowski JC, Norton GE et al (2002) The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufrière Hills Volcano, Montserrat. Geol Soc Mem 21:363–407. https://doi.org/10.1144/GSL.MEM.2002.021.01.17

    Article  Google Scholar 

  102. Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297. https://doi.org/10.1016/0013-7952(94)90042-6

    Article  Google Scholar 

  103. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392. https://doi.org/10.1086/622910

    Article  Google Scholar 

  104. Wilson CJN (1980) The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J Volcanol Geotherm Res 8:231–249

    Article  Google Scholar 

  105. Wilson CJN (1984) The role of fluidization in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. J Volcanol Geotherm Res 20:55–84

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Luigina Vezzoli for the e-mail communication kindly providing additional data on the published studies. We would also like to thank Dr Lorenzo Borselli and an anonymous reviewer for their in-depth review and comments that considerably improved this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Symeon Makris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makris, S., Manzella, I., Cole, P. et al. Grain size distribution and sedimentology in volcanic mass-wasting flows: implications for propagation and mobility. Int J Earth Sci (Geol Rundsch) 109, 2679–2695 (2020). https://doi.org/10.1007/s00531-020-01907-8

Download citation

Keywords

  • Debris avalanche
  • Runout
  • Volcanic
  • Lahar
  • Grain size distribution